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1 Introduction

Matrices are a well-established part of mathematics with plenty of research
being done on them as well as their properties. The aim of this project is to
focus on a certain type of matrix known as a Latin Square. Over the course
of this summer project, I investigated the concept of Latin Squares, some of
their properties such as orthogonality and connection to finite fields as well
as some of their real-world applications.

A lot of extensive research has already been done on Latin Squares, and
while an interesting topic in my opinion, it is easy to go down many rabbit
holes, looking for certain methods or patterns that may or may not necessar-
ily been there. Even famous mathematical minds such as Euler spent a lot
of time studying Latin Squares and still coming to the wrong conclusions.
Due to the exhaustive nature of studying this topic, the goal for this project
wasn’t to come up with some new breakthroughs, but rather to explore what
is already known and see what kind patterns and connections can be found.
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2 What is a Latin Square?

2.1 Definition

Let’s take a step back and take a look at what defines a Latin Square. A
Latin Square of order n is a n × n matrix, where n ∈ N such that no sym-
bol appears more than once in each row or column. That is, each row and
column of a Latin Square has distinct entries. Normally, Latin Squares will
either consist of numbers from 1 to n, or numbers from 0 to n−1, but letters
are also often used, especially in LS design. A normalised Latin Square is
one where the first entries of each row and column increase in steps of 1 and
are arranged in increasing order.

Here are some valid examples of Latin Squares of order n = 4:

(a)


1 2 3 4
4 3 2 1
2 4 1 3
3 1 4 2

 (b)


0 1 2 3
2 0 3 1
3 2 1 0
1 3 0 2

 (c)


A B C D
B C D A
D A B C
C D A B


2.2 Generation

A common method of generating a Latin Square of order n is by means of
a cyclic shift. If row i has distinct entries in each of its columns, then row
i + 1 is row i with its entries shifted either to the right or the the left by 1
position by adding or subtracting 1 mod n to each entry. A Latin Square
generated as such is a mod n addition table with the first row and column
as its indices.

Theorem 2.1. Let L be a n × n matrix with entries ai,j ∈ S where i, j ∈
{1, 2, ..., n} designate the row and column of L respectively, and S = {0, 1, 2, ..., n−
1}. Let the entries of the first row of L, a1,j, be distinct such that a1,1 ̸= a1,2 ̸=
... ̸= a1,n. This ensures that every element of the set S appears exactly once
in a1,j. If we apply the row permutations ai,j = ai+1,j+1 mod n, each row will
have distinct entries in each of its columns.
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Proof. Suppose two elements are identical in column j, i.e. ar,j = as,j where
r ̸= s and r, s ∈ {1, 2, ..., n}. Let t = s − r. Then, ar,j = ar+t,j+t. Since
ai,j = ai+1,j+1 due to the cyclic shift, then ar,j = as,j+t = as,j. Hence, we
find that j = j + t and thus, t = 0 and s = r. Therefore, the row entries of
each column are distinct. Since the entries of each row and column of L are
distinct, L is a Latin Square.

Example: Latin Square of order 5 generated by cyclic shift
0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3


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3 Real World Applications

3.1 Sudoku

Although it may not seem like it at first, there are many real-world uses for
Latin Squares. The first one that usually comes to mind is Sudoku. The
common Sudoku puzzle is indeed a Latin Square of order 9, as each entry
in every row and column is distinct and contains every number from 1 to 9,
though it is not necessary for a Latin Square to have the 3× 3 subdivisions
that are present in a Sudoku puzzle.

3.2 Tyre Example

Another motivating example is provided in the book ”Design Theory Vol-
ume 2” [1], which involves the testing of 4 different tyre types on 4 different
brands of car in such a way that each tyre model appears in each of the 4
wheel positions on each car. Below is a similar recreation of that example:

Car Tyres
- Front Left Front

Right
Rear Left Rear Right

Audi Type 1 Type 2 Type 3 Type 4
BMW Type 2 Type 3 Type 4 Type 1
Honda Type 3 Type 4 Type 1 Type 2
Mazda Type 4 Type 1 Type 2 Type 3

3.3 Sport Example

Another common example would be that of sport tryouts. There are 5 avail-
able positions on a sports team, and if we want to find out which of the 5
players is most effective in which positions, we can design a series of tryouts
in a Latin Square so that none of the players are in a position they already
were in during a previous tryout. However, the correlation between positions
being adjacent to each other numerous times is not immediately clear and
would require further statistical analysis.
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Team Tryouts
- Position 1 Position 2 Position 3 Position 4 Position 5
Tryout 1 Andy Brian Cian Dan Ethan
Tryout 2 Cian Andy Dan Ethan Brian
Tryout 3 Ethan Cian Andy Brian Dan
Tryout 4 Dan Ethan Brian Cian Andy
Tryout 5 Brian Dan Ethan Andy Cian

3.4 Statistical Experiments

The use of Latin Square designs in statistical experiments allows for two
blocking factors. This means that these designs can be used to simultane-
ously control or eliminate two sources of nuisance variability (random vari-
ables fundamental to the model but aren’t themselves of particular interest)
via the rows and columns of the Latin Square. For example, suppose the
mean yield of n types of grain is to be compared on a certain type of soil,
with a rectangular field subdivided into n2 plots. If we were to plant all of
one type of grain in the same row or column, we wouldn’t be certain whether
the yield would be the result of the fertility of the soil where it was plated or
of the type of grain itself. This is why it would be more beneficial to plant
only one of each type of grain in every row and column in a Latin Square
design as it would remove the nuisance variables and the mean yield would
be more accurate.

Furthermore, one may also want to simultaneously test other factors in-
fluencing the yield such as fertilisers or treatments. Much like above, each
treatment would be unique to each row and column resulting in a Latin
Square. In addition, each treatment would also be applied once to each grain
type. This resulting Latin Square is orthogonal (see next chapter) to the
Latin Square above. Further research into the statistical models of Latin
Square designs has been conducted by the PennState Eberly College of Sci-
ence from which this example was taken [2].
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4 Properties

4.1 Orthogonal Array Representation

Each Latin Square can be represented in a n2 × 3 array known as an orthog-
onal array. The 3 columns (or rows if you make a row orthogonal array) are
denoted by r, c and s which represent the row, column and symbol in that
row and column of the Latin Square. For example, take the following Latin
Square of order 3:  1 2 3

2 3 1
3 1 2



Its orthogonal array is:

r c s

1 1 1
1 2 2
1 3 3
2 1 2
2 2 3
2 3 1
3 1 3
3 2 1
3 3 2

4.2 Orthogonal Latin Squares

In the previous chapter, we briefly mentioned the concept of Latin Squares
being orthogonal to each other. A pair of Latin Squares of order n is said
to be orthogonal to each other if, and only if, when superimposed, their or-
dered pairs of entries are distinct. In other words, let the Latin Square L1

have entries ai,j and the Latin Square of the same order L2 have entries bi,j
where i, j denote the row and column respectively. L1 and L2 are orthogonal
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to each other iff the ordered pairs (ai,j, bi,j) are distinct for all i, j. By this
definition, it is clear that a Latin Square is never orthogonal to itself as no
pair of entries will be distinct.

Example: Orthogonal Latin Squares of order n = 3

(L1)

 1 2 3
2 3 1
3 1 2

 (L2)

 1 2 3
3 1 2
2 3 1


 (1, 1) (2, 2) (3, 3)

(2, 3) (3, 1) (1, 2)
(3, 2) (1, 3) (2, 1)


(Superimposed)

As each entry of the superimposed array is distinct, L1 and L2 are orthogonal
to each other. Alternatively, L2 is said to be L1’s orthogonal mate and vice
versa.

Example: Non-Orthogonal Latin Squares of order n = 3

(L1)

 1 2 3
2 3 1
3 1 2

 (L2)

 2 3 1
3 1 2
1 2 3


 (1, 2) (2, 3) (3, 1)

(2, 3) (3, 1) (1, 2)
(3, 1) (1, 2) (2, 3)


(Superimposed)

Here, L1 and L2 are not orthogonal to each other as pairs of entries in the
superimposed array repeat themselves. Since not every pair is distinct, these
are not orthogonal.
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Not every order of Latin Square has an orthogonal mate. For example,
as noted by R.N.Mohan, Moon Ho Lee, and Subash Shree Pokhrel in their
paper on the orthogonality of Latin Squares [3], Tarry proved by brute force
that no Latin Square of order 6 has an orthogonal mate. That is, no pair of
Latin Squares of order 6 exist such that they are orthogonal to each other.
Meanwhile some orders can have many orthogonal mates.

4.3 Equivalence Classes

An equivalence class is a subset of some set S in which its components are
equivalent to each other, i.e. there exists an equivalence relation between
them, meaning these three properties are satisfied: reflexive (a ∼ a), sym-
metric (if a ∼ b, then b ∼ a) and transitive (if a ∼ b and b ∼ c, then a ∼ c).

Isotopy is an example of an equivalence relation, with the isotopy classes
being the equivalence classes. Two Latin Squares are said to be isotopic to
each other if there exist three bijections of rows, columns and symbols from
one Latin Square to the other. In other words, we can permute the rows,
columns and symbols of one Latin Square to obtain the other Latin Square.

Example: 
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

 isotopic to


4 2 1 3
2 1 3 4
1 3 4 2
3 4 2 1



By permuting the 1st and 3rd rows, the 2nd and 4th columns and the sym-
bols 3 and 4 in the Latin Square on the left, the Latin Square on the right
will be obtained.

Example:
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

 not isotopic to


1 3 2 4
4 1 3 2
3 2 4 1
2 4 1 3


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These are not isotopic as there is no way of permuting the rows, columns
and symbols of the first Latin Square to obtain the second one.

Isomorphism is another equivalence relation. A pair of isotopic Latin Squares
is said to be isomorphic if their three bijections are equal. This can be shown
by permuting the rows, columns and symbols of the orthogonal array of one
Latin Square into the orthogonal array of the other. [4]

Example:

Below are given two Latin Squares of order 3 along with their corresponding
orthogonal arrays.

(L1)

 2 1 3
3 2 1
1 3 2



r c s

1 1 2
1 2 1
1 3 3
2 1 3
2 2 2
2 3 1
3 1 1
3 2 3
3 3 2

(L2)

 2 3 1
1 2 3
3 1 2



r c s

1 1 2
1 2 3
1 3 1
2 1 1
2 2 2
2 3 3
3 1 3
3 2 1
3 3 2
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We can re-order the orthogonal array of L1 so that it matches the orthogonal
array of L2 without permuting anything within L1 itself. If we make the
first column of the orthogonal array of L1 represent the symbol, the second
column represent the row and the third column represent the column of L1,
the orthogonal array of L1 will be identical to the orthogonal array of L2,
but still represent L1.

(L1)

 2 1 3
3 2 1
1 3 2



s r c

1 1 2
1 2 3
1 3 1
2 1 1
2 2 2
2 3 3
3 1 3
3 2 1
3 3 2
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5 Mutually Orthogonal Latin Squares

5.1 Definition

Mutually Orthogonal Latin Squares (MOLS) of order n is a set of Latin
Squares of order n such that they are all orthogonal to each other. That is,
each Latin Square in a set of MOLS is orthogonal to all other Latin Squares
in that set (other than itself).

Example 5.1: MOLS of order n = 5
0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3




0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2




0 1 2 3 4
3 4 0 1 2
1 2 3 4 0
4 0 1 2 3
2 3 4 0 1




0 1 2 3 4
4 0 1 2 3
3 4 0 1 2
2 3 4 0 1
1 2 3 4 0



There is continuous, exhaustive research being done into finding or generat-
ing sets of MOLS of different orders. If a Latin Square is of order q generated
from a finite field of that order, where q is either a prime number, or a power
of a prime number, then there are q−1 MOLS of that order due to the cycli-
cal nature of such finite fields. Where the study gets extensive is in regards
to other orders of Latin Squares. The famous mathematician Leonhard Euler
spent many years studying orthogonality of Latin Squares and even he made
conjectures that ended up being disproven. For example, in the previously
mentioned ”Design Theory” book [1], it is noted that Euler conjectured that
no orthogonal Latin Squares existed of an order that is twice an odd number.
This was disproven in 1959 by Bose, Shrikhande, and Parker when mutually
orthogonal Latin Squares of order 22 were generated.

5.2 MOLS of Prime Order p

A set of MOLS of order p where p is a prime number is the simplest case to
study as it is the one that has the most clear and easy to notice patterns for
each Latin Square in the set. Let’s take a closer look at the p = 5 example
5.1. By looking at the first Latin Square in that set, we can see that it was
generated by a cyclic shift, much like in Chapter 2. By looking at the entire
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set, we can see that the first row of every Latin Square remains fixed. Fur-
thermore, we can see that all other rows are just permutations of the rows of
the first Latin Square. In other words, each individual row remains the same
across each Latin Square and it’s just the position of each row (except the
first row) that changes. In fact, all rows except the first one permute in such a
way that none of them are in a position they were in a previous Latin Square.

Upon further inspection, it can be noticed that the first column of each
of the MOLS is a modulo 5 multiple of the column of the first Latin Square,
i.e. the first column of the second Latin Square in the set of MOLS is 2 times
the first column of the first Latin Square.

2×


0
1
2
3
4

 =


0
2
4
1
3

mod 5

Similarly for the rest, with the first column of the third and fourth Latin
Square in the set of MOLS being 3 and 4 times the first column of the first
Latin Square modulo 5 respectively.

Finally, if the first column of the first Latin Square is added to each of its
columns modulo 5, it generates the second Latin Square in the set of MOLS,
adding twice the first column to each column modulo 5 generated the third
Latin Square, and adding 3 times the first column to each column modulo 5
generated the fourth and final mutually orthogonal Latin Square.

With this algorithm, we generated 4 MOLS of order 5 by generating the
first Latin Square by means of a cyclic shift, and then adding

k ×


0
1
2
3
4

mod 5,

with scalar k ∈ {1, 2, 3}. The question now is: does this generate p−1 MOLS
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of any prime order p? The following section goes through the general case
for any prime order p, showing it will always work.

5.3 The Algorithm

Let L1 be a Latin Square of order p generated by a cyclic shift, where p is
a prime number and the entries L1,i,j ∈ 0, 1, 2, ..., p− 1 with i, j denoting
the rows and columns respectively. Let v denote the first column of L1 and
k = 1, 2, ..., p − 2. Adding k × v to each individual column of L1 mod p
generates the remaining MOLS of order p, one for each value of k, leaving us
with a set of p− 1 mutually orthogonal Latin Squares. Below is the theorem
that proves this algorithm will work only for prime orders p.

Theorem 5.1. For any vector v ∋ {0, 1, 2, ..., p−1} in any order, and scalar
k = 1, 2, ..., p − 1, the product k ∗ v mod p has no repeated entries for any
prime number p.

Proof. Assume k ∗ v has repeated entries (k ∗ v)i = (k ∗ v)j mod p, where
i ̸= j. We can rewrite this as k ∗ vi = k ∗ vj mod p. Because p is prime and
k < p, p and k will always be co-prime. The cancellation law of modular
arithmetic states that if k ∗ a = k ∗ b mod n and k ̸= 0, then a = b mod
n. By applying this law, we get vi = vj mod p. This is a contradiction as
by definition, v has no repeated entries. Thus k ∗ v mod p has no repeated
entries for any prime number p.

Alternatively, assume p has some factors r, s such that p = r ∗ s with
1 < r, s < p−1. Let k = r and let the entry vi = 0 Naturally, k∗vi = r∗0 = 0
mod p. Now let a different entry vj = s. We find that k ∗ vj = r ∗ s = p = 0
mod p. This results in a repetition in k ∗ v as k ∗ vi = k ∗ vj = 0 mod p.
Therefore the theorem does not hold for non-prime numbers.

5.4 Code

Below is a bit of MATLAB code I wrote that generates p−1 MOLS of prime
order p by means of the above algorithm. By setting ”order” to any prime
number, we can generate the MOLS for that value.

This first function is used to generate the first Latin Square of order n by
method of cyclic shifts.
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1 function A = LatinSquare(order)

2
3 % Checks if a valid order for a Latin Square is

entered.

4 if(order < 1 || mod(order , 1) ~= 0)

5 fprintf (" Latin square of order %g does not

exist!", order);

6
7 else

8 A = zeros(order);

9 numbers = 0:order -1;

10 for i = 1:order

11 A(i, :) = circshift(numbers , 1-i);

12 end

13 end

14 end

.

This next function checks for orthogonality between two Latin Squares.

1 function result = Orthogonality(A, B)

2 % Checks if the input matrices are square and of

the same size

3 [n1 , m1] = size(A);

4 [n2 , m2] = size(B);

5
6 if n1 ~= m1 || n2 ~= m2 || n1 ~= n2

7 error('Input matrices must be square and of

the same size.');
8 end

9
10 n = n1; % Size of the Latin squares

11
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12 % Creates the array of vectors

13
14 vectors = [A(:),B(:)];

15
16 % Checks if all vectors are distinct from

eachother

17 distinct = unique(vectors , 'rows');
18
19 % Outputs the result

20 result = size(distinct , 1) == n^2;

21 end

.

With these functions defined, we can now start generating our set of MOLS.
(Note: If writing in MATLAB Live Script, these functions go at the end.)

1 clear;

2
3 % Set the order of the Latin Squares

4 order = 7;

5
6 % Defines vector x based on the order

7 x = (0:order -1)'
8
9 % Creates first Latin Square

10 L{1} = LatinSquare(order);

11
12 % Generates n-1 Latin Squares by adding different

13 % multiples of x mod n to the first Latin Square

14 for i = 2:order -1

15
16 L{i} = mod(L{1} + (i-1)*x, order);

17
18 % You can uncomment the line below if you wish

for the numbers to be

19 % in range 1 to p instead of 0 to p-1.

20
21 %L{i}(L{i} == 0) = order;
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22
23 end

24
25 % Displays the Latin Squares

26 for i = 1:numel(L)

27 disp(L{i});

28 end

.

This part checks for orthogonality between all generated Latin Squares in
the list and displays result as a matrix. Each row / column represents a
corresponding Latin Square. 1 means orthogonal, 0 means not orthogonal.

1 for i = 1:numel(L)

2 for j = i:numel(L)

3
4 O(i,j) = Orthogonality(L{i}, L{j});

5 end

6 end

7
8 fprintf (" Orthogonality matrix = ");

9 disp(O);

.

This final part confirms whether the generated Latin Squares are mutually
orthogonal based on the above matrix. They’re mutually orthogonal if the
orthogonality matrix is upper triangular with 1s in the top right corner and
0s everywhere else.

1 T = triu(ones(order -1) ,1);

2 if (sum(T,"all") == sum(double(O),"all"))

3 disp("We have a set of MOLS!");

4 else

5 disp("Not mutually orthogonal!");

6 end
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6 Powers of Primes

6.1 Order 4

In the previous chapter, we looked for patterns that would hint at some
algorithm that could generate the p− 1 MOLS of prime order p. But could
we do the same for some order q that is a power of a prime? Let’s take a
look at MOLS of order 4 [5].

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0




0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2




0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1



By looking at this set of MOLS, are there any obvious patterns that will
help us generate a set of MOLS of order 8? Much like for prime numbers,
the first row remains fixed across all MOLS with all other rows being per-
muted. In fact, all rows except the first one seem to be cyclically shifted
across each Latin Square. However, this may be a coincidence due to the
small size of the MOLS.

Unfortunately, this is where the similarities to the prime example ends as
the initial Latin Square is not generated by a cyclic shift. Furthermore, we
can’t generate MOLS by adding multiples of the first column due to the the-
orem in the previous chapter. But we could try find an orthogonal mate for
order 8 by trying to discover any patterns involved in the generation of the
first mutually orthogonal Latin Square of order 4.

6.2 Orthogonal Mate for Order 8

The first of the MOLS 6.1 of order 4 has 0s along its descending diagonal and
3s along its ascending diagonal. Also, the entries in the first row and column
increase in steps of 1 from 0 to 3, while the entries of the last row and column
decrease from 3 to 0 in steps of 1. My first approach was to try something
similar for order 8 but with 0s and 7s along the diagonal and the ”edge”
rows and columns increasing and decreasing in steps of 1 in a similar fashion.
The remaining entries were filled out by extending the ”alternating” pattern
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of the existing Latin Square of order 4. Doing this generated the following
Latin Square: 

0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0



My first approach was to do a cyclic permutation of all rows except the
first one by 1 step, resulting in this Latin Square.

0 1 2 3 4 5 6 7
7 6 5 4 3 2 1 0
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1



However, I quickly saw that it wasn’t orthogonal as in the original Latin
Square 0 appears along the diagonal, meanwhile 1 appears three times along
the diagonal of the new Latin Square, meaning that upon superposition, the
pair (0,1) would appear three times along the diagonal. In fact, for a Latin
Square of order 8 to be orthogonal to our first one, each number from 0 to
7 has to appear exactly once along both diagonals. Unfortunately, there is
no simple pattern to this case that can be found by brute force and a deeper
understanding of finite fields is required.
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7 Connection to Finite Fields

7.1 What are Finite Fields?

I have mentioned the concept of finite fields numerous times throughout this
paper. It isn’t a subject I have studied yet, but I got an introduction to it
while working on this project.

A field is a set on which addition, multiplication and some ”0” is defined
and an inverse exists for every element ̸= 0. A finite field is a field with a
finite number of elements. For example, F5 = {0, 1, 2, 3, 4} is a finite field as
each element is closed under addition and multiplication modulo 5. That is,
adding and multiplying any elements of F5 mod 5 always results in an element
of F5. Furthermore, each element has an inverse mod 5. F6 = {0, 1, 2, 3, 4, 5}
is not a finite field as 2, 3 and 4 do not have an inverse modulo 6.

7.2 Connection to Latin Squares

The field Fq is a finite field only if q is a prime number or a power of a prime.
This is why, for Latin Squares of order q, there are q−1 mutually orthogonal
Latin Squares, as their construction arises from finite fields. This is also why
there aren’t n− 1 MOLS of any order n ̸= q ∈ N, because Fn is not a finite
field and thus it is more challenging to find an orthogonal mate for such Latin
Squares.

Although it is established we can generate q − 1 MOLS from the finite field
Fq, there is still the open question of: is the converse true? That is, given a
set of q − 1 MOLS, can one construct a field or field-like structure?
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8 Conclusion

When I first started looking into the topic of Latin Squares, I thought it
was a rather simple concept - a square matrix with no repeating entries in
any row or column. However, I quickly realised how much more nuance
there is to this subject. I learned how Latin Squares have many properties
that mathematicians spend years of their lives researching. One with little
experience can spend a lot of time searching for patterns that may not even
be there. I learned more about finite fields and how their properties connect
to Latin Squares and how extensive knowledge of the topic is required to
investigate more complicated properties of Latin Squares.
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