Module Detai	ils							
Title Short:		Algebraic Foundations of Quantum Computing APPROVED						
Language of Instruction:		English						
Module Code: MA4102								
ECTS Cred	lits: 5							
NFQ Level	:		EQF Level:		EHEA Level:			
Valid From	n:	2021-22 (01-09-2	1 – 31-08-22)					
Teaching Period:		Semester 1						
Module Delivered	in	4 programme(s)						
Module Ov	vner:	MICHAEL MC GETTRICK						
Module Discipline:		MA_ST_AM - School of Mathematics, Statistics and Applied Mathematics						
Module Da	ita:	1 - 4 NON LAB						
Module Description:		This course introduces the fundamentals of quantum computing. The focus is on the Linear Algebra used in the circuit model, and the understanding of basic algorithms in quantum computation.						
Learning C	Dutcom	es						
On success	sful com	pletion of this mod	ule the learner will l	be able to:				
LO1 Descri operat		be representation of information using vectors in a Hilbert Space (qubits and qudits) and associated ors.						
LO2 Prove the no-cloning entropy.		the no-cloning theo	eorem and calculate the entanglement of composite states using Von-Neumann					
LO3 Manipu Measu		late density operators, Completely Positive Trace-Preserving Maps and Positive O perator-Valued res						
LO4	Explair	n the Deutsch-Josza algorithm and Quantum Teleportation.						
LO5	Descrit	be various logic gates (Hadamard, CNOT) in the quantum circuit model.						
LO6 Show		Shor's (factorization) algorithm, Grover's (search) algorithm and their application.						

Module Content & Assessment

Indicative Content

Algebraic Foundations of Quantum Computing

Qubits, qudits as normalized vectors, Unitary operators and measurement operators. Tensor product states and density matrices. The no-cloning theorem, entanglement and entropy. Kraus operators and quantum channels. Completely positive trace preserving maps and positive operator valued measures. The Deutsch-Jozsa algorithm. Quantum circuit model, gates and teleportation. Computational complexity and Grover's algorithm. The quantum Fourier transform and Shor's factoring algorithm.

Written Assessment

Assessment Type	Assessment Description	Outcome addressed	% of total	Marks Out of	Pass Marks	Sitting	Assessment Period	Assessment Date	Duration	Mandatory
Paper 1 - Written	n/a	1,2,3,4,5,6	70	100	40	First Sitting	Semester 1	n/a	2:00	True
Assessment	is marked as l	bondable but	t has r	no matcl	hing ass	essment	S			
Paper 1 - Written	n/a	1,2,3,4,5,6	70	100	40	Second Sitting	Autumn	n/a	2:00	True
Assessment	is marked as l	bondable but	t has r	no matci	hina ass	essment	s			

Continuous Assessment

Assessment Type	Assessment Description	Outcome addressed	% of total	Marks Out of	Pass Marks	Sitting	Assessment Period	Assessment Date	Duration	Mandatory
Continuous Assessment 1	n/a	1,2,3,4,5,6	30	100	40	First Sitting	Semester 1	n/a	0	True
Continuous Assessment 1	Continuous assessment mark brought forward from 1st sitting	1,2,3,4,5,6	30	100	40	Second Sitting	Autumn	n/a	0	True

No Oral, Audio Visual or Practical Assessment

No Department-based Assessment

No Research

No Study Abroad

No Computer-based Assessment

The institute reserves the right to alter the nature and timings of assessment

Module Workload					
Workload: Full Time					
Workload Type	WorkLoad Description	Learning Outcomes	Hours	Frequency	Average Weekly Learner Workload
Lecture	1 hour duration	1,2,3,4,5,6	24	Per Semester	2.00
Tutorial	1 hour duration	1,2,3,4,5,6	12	Per Semester	1.00
Independent & Directed Learning (Non-contact)	No Description	1,2,3,4,5,6	84	Per Semester	7.00
				Total Hours	120.00
		Total Weekl	y Learne	er Workload	10.00
		Total We	ekly Co	ntact Hours	3.00
This module has no Pa	rt Time workload.				

Module Resources

Recommended Book Resources

Richard J. Lipton and Kenneth W. Regan., Quantum Algorithms via Linear Algebra, MIT Press

Michael A. Nielsen and Isaac L. Chuang., *Quantum Computation and Quantum Information*, Cambridge University Press

Ranee K. Brylinski and Goong Chen, Mathematics of Quantum Computation, CRC Press

Wolfgang Scherer, Mathematics of Quantum Computing, Springer

This module does not have any article/paper resources

This module does not have any other resources

Module Full Time Equivalent

Discipline

School of Mathematics, Statistics and Applied Mathematics

Module Delivered in

Course Stream Code	Course Stream Title
BMS2	BMS2 Bachelor of Science (Mathematical Science) Honours (Approved)
BPT2	BPT2 Bachelor of Science (Physics) Applied, Astrophysics, Biomedical, Theoretical (Hons) (Approved)
BS2	BS2 Bachelor of Science (Hons.) (Approved)
PHO1	PHO1: Bachelor of Science (Physics) Applied, Astrophysics, Biomedical, Climate, Theoretical (Approved)

% 100

Module Instructors		
Module Instructors		
Staff Member	Staff Email	
MICHAEL MC GETTRICK	michael.mcgettrick@nuigalway.ie	