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1 INTRODUCTION AND BACKGROUND

1 Introduction and Background

1.1 Background

The nonlinear Schrödinger equation (NLSE) is a nonlinear partial differential
equation that fascinates physicists and applied mathematicians because of its
applications to many different nonlinear phenomena in fluid mechanics,1 condensed
matter physics,2 and nonlinear optics.3 In particular, in nonlinear optics the NLSE
models nonlinear occurrences such as self-phase modulation, four-wave mixing
and second harmonic generation, to name a few.4 A good understanding of this
equation’s solutions and its properties may contribute to finding useful applications
to these types of models. Since the principle of superposition does not apply to
nonlinear differential equations, mathematicians have to look at each equation on a
case by case basis and it is not always possible to derive an exact solution. However
the NLSE is of particular interest because it can support soliton solutions. These
are exact solutions which were discovered to solve certain nonlinear equations in
the 1800s.5

Solitons are nonlinear stable waves that arise in media where the effects of
dispersion and nonlinearity cancel out. Solitary waves were first observed by John
Scott Russel in 1834.6 He was a Scottish engineer who noticed waves that travelled
from a boat did not dissolve into ripples as expected but remained stable and
travelled many kilometres. He created his own solitary waves in a water tank
and made observations. He discovered that these water waves would travel over
long distances while the speed and shape remained stable. He observed that the
speed of the wave depends on the depth of the water and that the waves never
merge i.e. two solitary waves emerge after a collision retaining their shape and speed.

Figure 1: Russell’s Observations of a Soliton6

This discovery remained controversial as they disagreed with Bernoulli’s and New-
ton’s theorems of hydrodynamics. The controversy ended when N. J. Zabusky and
M. D. Kruskal demonstrated that the Korteweg-de Vries equation, another nonlinear
partial differential equation, can be solved with a soliton.5 Since then there has been
growing interest in soliton solutions and their application in nonlinear phenomena.
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Figure 2: Graph of two solitons

1.2 Aims and objectives

In this paper soliton solutions will be derived from the cubic NLSE using two meth-
ods. The cubic NLSE takes the following form:

iut + auxx + c|u|2mu = 0 (1)

where u = u(x, t) is the complex-valued function of two real variables x, t,
i =

√
−1 and the real coefficients, a and c, correspond to the group velocity

and the nonlinear coefficient respectfully. m > 0 is the nonlinear parameter.
For m = 1, a = 1 and c = µ, the equation represents the NLSE. Equation (1)
is similar to the equation that models light propagating through left-handed
metamaterials. These are artificially-made materials that can affect EM waves dif-
ferently compared to EM waves propagating through naturally occurring materials.7

There are many ways to solve this nonlinear equation such as the sine-cosine
method,8 the (G

′

G
)-expansion method,9 and the exp(−ϕ(ξ)) - expansion method10

In this paper the solutions will be derived by the direct integration method and the
simple equation method11 under the travelling-wave assumption.
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2 Direct Integration

We assume (1) is solved by seeking a travelling wave solution of the form:

u(x, t) = eiθ(x,t)U(ξ) (2)

where U(ξ) is a real function for the amplitude of the wave and ξ = x− vt, where v
is real and corresponds to the speed of the wave. The phase component of the wave
is θ(x, t) = −kx + ωt + θ0, where k is the wavenumber, ω is the angular frequency
and θ0 is the phase constant. All these quantities are real. To change the variables
from (x, t) to ξ we use the relation ξ = x− vt and the chain rule. Substituting (2)
into (1), equation (1) becomes:

aU ′′ − 2iakU ′ − ωU − ivU ′ − ak2U + cU2m+1 = 0 (3)

.
After splitting into real and imaginary parts, we obtain

(v + 2ak)U ′ = 0 (4)

and
aU ′′ − (ω + ak2)U + cU2m+1 = 0 (5)

.
The speed of the soliton is found from (4):

v = −2ak (6)

.
Multiplying equation (5) by U ′ and integrating gives

(U ′)2 −
(ω
a
+ k2

)
U2 +

c

a(m+ 1)
U2m+2 = 0 (7)

assuming that U ′, U → 0 as |ξ| → ∞.

Assuming V = U2 the following ordinary differential equation is obtained:

(V ′)2 − α2V 2 + β2V m+2 = 0 (8)

where
α2 = 4

(ω
a
+ k2

)
and

β2 =
4c

a(m+ 1)

. We can rewrite (8) as

V ′ = V
√

α2 − β2V m

=⇒ dV

V
√

α2 − β2V m
= 1
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In order to find the exact solution we integrate using MAPLE and rearrange to get

V (ξ) =

[
−α2

β2
tanh2

(αm
2

(ξ + C)
)
− 1

] 1
m

(9)

with C a constant of integration.

Take U =
√
V to find U(ξ) to be

U(ξ) =

[
−α2

β2
tanh2

(αm
2

(ξ + C)
)
− 1

] 1
2m

(10)

Substituting this into (2) we find the exact solution of the equation

u(x, t) = eiθ(x,t)
[
−α2

β2
tanh2

(αm
2

(x− vt+ C)
)
− 1

] 1
2m

(11)

From (2) and (10), we have that

|u(x, t)| = |eiθ(x,t)||U(ξ)| = |(−1)|
1

2m

(
1 +

α2

β2
tanh2

(αm
2

(x+ 2akt)
) 1

2m

)
(12)

or

|u(x, t)| = |U(ξ)| =
(
1 +

α2

β2
tanh2

(αm
2

(x+ 2akt)
) 1

2m

)
(13)

Denoting by A = |U |, the amplitude of the wave, we have that

A =

(
1 +

(ω + ak2)(m+ 1)

c
tanh2

(√
c

a(m+ 1)
m(x+ 2akt)

)) 1
2m

(14)
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Figure 3: Graph representation for the amplitude of the soliton (equation 14) for
ω = 0.3, a = 0.5, c = 1, k = 1,m = 1

.
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3 Simple Equation Method

In this chapter we will study the case of the NLSE where a = 1, c = µ and m = 1:

iut + uxx + µu|u|2 = 0 (15)

where u = u(x, t) is a complex-valued solution to the equation and µ is a constant.
We will use the transformation

u(x, t) = ei(αx+βt)U(ξ) ξ = ik(x− 2αt) (16)

where α, β and k are real constants to be determined and U = U(ξ) is a complex
function in ξ, in order to change the nonlinear PDE into an ODE. After subbing
(16) into (15), we obtain this ODE

−k2U ′′ − (β + α2)U + µU3 = 0 (17)

.
To solve this ODE using the simple equation method we write U(ξ) as a finite series
in terms of ϕ(ξ)

U(ξ) =
N∑
i=0

aiϕ(ξ)
i, ai ̸= 0 (18)

where ai are independent of ξ that will be determined and ϕ = ϕ(ξ) solves certain
ordinary differential functions. In this method, this finite series is called the simplest
method. We use equations where the general solution can been found easily. In this
example we will use the Bernoulli equation

ϕ′(ξ) = Aϕ(ξ) +Bϕ(ξ)2. (19)

This equation has the well known solution:

ϕ(ξ) =
AeA(ξ+ξ0)

1−BeA(ξ+ξ0)
(20)

for A > 0, B < 0 and where ξ0 is a constant of integration.

To find N we balance the linear terms of highest order, U ′′ with the highest order
of nonlinear term, U3 of (17) to get N + 2 = 3N =⇒ N = 1 so the series in ϕ(ξ)
becomes

U(ξ) = a0 + a1ϕ(ξ). (21)

Substituting (21) into (17) with (19) and setting each coefficient of the same power
of ϕ(ξ) to zero, we obtain algebraic equations in k, a0, a1.A,B, α, β and µ:

−(β + α2)a0 + µa30 = 0,

−k2a1A
2 − (β + α2)a1 + 3µa20a1 = 0

−3k2a1AB + 3µa0a
2
1 = 0

−2k2a1B
2 + µa31 = 0

(22)

The solve command can be used in MAPLE to get a0, β, B:

a0 = ±kA

2

√
2

µ
, β =

k2A2

2
− α2, B = ± a1

2k

√
2µ.
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Using (21) and (20) and assuming A > 0 and B < 0 and substituting these equations
into (17), we obtain:

U(ξ) = ±
(

kA√
2µ

+ a1

[
2kAeA(ξ+ξ0)

2k − a1
√
2µeA(ξ+ξ0)

])
(23)

The travelling solution would be

u(x, t) = ±
(

kA√
2µ

+ a1

[
2kAeA(ik(x−2αt)+ξ0)

2k − a1
√
2µeA(ik(x−2αt)+ξ0)

])
e
i
(
αx+

(
k2A2

2
−α2

)
t
)

(24)

Setting B = −1 we obtain an ordinary differential equation

ϕ′(ξ) = Aϕ(ξ)− ϕ(ξ)2 (25)

This has a solution

ϕ(ξ) =
A

2

[
1− tanh

(
A

2
(ξ + ξ0)

)]
(26)

where A > 0

Substituting (21) and (25) into (15) and setting each coefficient of the same power
of ϕ(ξ) to zero, we obtain another set of algebraic equations

−(β + α2)a0 + µa30 = 0,

−k2a1A
2 − (β + α2)a1 + 3µa20a1 = 0

3k2a1A+ 3µa0a
2
1 = 0

−2k2a1 + µa31 = 0

(27)

that can be solved in MAPLE using the solve command:

a0 = ±

√
β + α2

µ
, a1 = ±

√
2

µ
,A = −1

k

√
2(β + α2)

where β, α and k are arbitrary constants.

Substituting these into our solution for U(ξ), (21) and using our solution for ϕ(ξ)
we obtain:

U(ξ) =

√
β + α2

µ
tanh

(√
β + α2

2k2
(ξ + ξ0)

)
(28)

This leads to the travelling wave solution

u(x, t) =

√
β + α2

µ
tanh

(√
β + α2

2k2
(ik(x− 2αt) + ξ0)

)
ei(αx+

k2A2

2
−α2)t (29)

Will included some plots here hopefully
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4 CONCLUSIONS

4 Conclusions

In this paper, exact soliton solutions of the nonlinear Schrödinger equation were
found using two techniques, direct integration and the simple equation method. The
first solution was found by writing the original equation as an ordinary differential
equation assuming the solution is a travelling wave. This ODE was then solved
using integration techniques obtaining a soliton solution. This solution was plotted
in MAPLE and it was shown than the soliton’s shape and speed remained unchanged
for t > 0. To get the second soliton solution, the simplest equation method was used.
To solve for u(x, t), it was written in terms of a finite series of functions of ξ that
solve a Bernoulli equation. I was unable to plot a soliton solution for this method
using MAPLE. This can be looked at further in the future. These soliton solutions
may be important in describing practical physical problems. Both of these methods
may also be applied to other nonlinear partial differential equations. Techniques in
MAPLE such as plotting, solving ODEs, and other equations were practiced and
used frequently in this project aswell as LaTeX skills that will be used in writing
future mathematical papers.
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