1	Published as: Troy, S.M., Lawlor, P.G., O' Flynn, C.J., Healy, M.G. 2013. Impact of
2	biochar addition to soil on greenhouse gas emissions following pig manure application. Soil
3	Biology and Biochemistry 60: 173 – 181.
4	
5	Impact of biochar addition to soil on greenhouse gas emissions following pig manure
6	application
7	
8	Shane M. Troy ^{ab} , Peadar G. Lawlor ^a , Cornelius J. O' Flynn ^b and Mark G. Healy ^{b*}
9	
10	^a Teagasc, Pig Development Department, Animal & Grassland Research & Innovation Centre,
11	Moorepark, Fermoy, Co. Cork, Ireland.
12	^b Civil Engineering, National University of Ireland, Galway, Co. Galway, Ireland
13	*Corresponding author. Tel.: +353 91 495364 fax: +353 91 494507, e-mail address:
14	mark.healy@nuigalway.ie
15	
16	ABSTRACT
17	The application of biochar produced from wood and crop residues, such as sawdust, straw, sugar
18	bagasse and rice hulls, to highly weathered soils under tropical conditions has been shown to
19	influence soil greenhouse gas (GHG) emissions. However, there is a lack of data concerning
20	GHG emissions from soils amended with biochar derived from manure, and from soils outside
21	tropical and subtropical regions. The objective of this study was to quantify the effect on
22	emissions of carbon dioxide (CO ₂), nitrous oxide (N ₂ O) and methane (CH ₄) following the
23	addition, at a rate of 18 t ha ⁻¹ , of two different types of biochar to an Irish tillage soil. A soil

24	column experiment was designed to compare three treatments (n=8): (1) non-amended soil (2)
25	soil mixed with biochar derived from the separated solid fraction of anaerobically digested pig
26	manure and (3) soil mixed with biochar derived from Sitka Spruce (Picea sitchensis). The soil
27	columns were incubated at 10 $^{\circ}$ C and 75 % relative humidity, and leached with 80 mL distilled
28	water, twice per week. Following 10 weeks of incubation, pig manure, equivalent to 170 kg
29	nitrogen ha ⁻¹ and 36 kg phosphorus ha ⁻¹ , was applied to half of the columns in each treatment
30	(n=4). Gaseous emissions were analysed for 28 days following manure application. Biochar
31	addition to the soil increased N_2O emissions in the pig manure-amended column, most likely as a
32	result of increased denitrification caused by higher water filled pore space and organic carbon
33	(C) contents. Biochar addition to soil also increased CO_2 emissions. This was caused by
34	increased rates of C mineralisation in these columns, either due to mineralisation of the labile C
35	added with the biochar, or through increased mineralisation of the soil organic matter.
36	
37	Keywords: biochar, pig manure, soil, nitrous oxide, carbon dioxide, methane
38	
39	
40	
41	
42	
43	
44	
45	
46	

47 **1. Introduction**

48 Increasing amounts of greenhouse gases (GHG) in the atmosphere are causing changes in 49 world climate (IPCC, 2007). The production of biochar and renewable energy through pyrolysis 50 is seen as one prospective strategy, which could result in reduced global carbon dioxide (CO_2) 51 concentrations. Roberts et al. (2010) found negative values for the net GHG emissions following 52 the pyrolysis of corn stover and yard waste and the application of the biochar to soil (-864 and -53 885 kg CO_2 equivalent emissions reduction per tonne dry feedstock, respectively), compared 54 with ethanol production from the corn stover and compost production from the vard waste. The 55 majority (62 - 66 %) of these GHG emission reductions were realised through C sequestration 56 within the soil. Gaunt and Lehmann (2008) found that when biochar was applied to agricultural 57 land, the potential reduction in GHG emissions was between 2 and 5 times greater than when it 58 was burned to offset fossil fuel usage. These potential reductions in GHG emissions following 59 biochar application to soil are primarily due to the sequestration of carbon (C) within the soil 60 (Gaunt and Lehmann, 2008; Roberts et al., 2010), with other potential reductions due to savings 61 in fertiliser requirement, reductions in fossil fuel usage, and reductions in soil emissions (Gaunt 62 and Lehmann, 2008).

In Ireland, recent landspreading legislation (Nitrates Directive, 91/676/EEC) has limited the magnitude, timing and placement of organic manure to land. Currently, the amount of livestock manure that can be applied to land has been limited to 170 kg of nitrogen (N) per hectare per yr. The land available for landspreading will further be restricted, starting in 2013, and culminating in 2017, when land spreading of pig manure can no longer exceed the crop's phosphorus (P) requirements for growth (S.I. 610 of 2010). The implication of this will be that an additional ~50 % land area will be required for manure application than is the case in 2012,

thereby increasing the cost of manure handling. The resulting increase in manure transport costs for farmers, along with the potential of surface and groundwater pollution from the landspreading of manure, has resulted in the need to examine practical solutions for pig manure treatment. The production of biochar from pig manure may be a solution for some farmers living in very pig dense regions.

75 Biochar application to agricultural soils has the potential for long-term C sequestration, 76 due to the stability of biochar in soil environments. Biochar is composed of a range of different 77 forms of C, from recalcitrant aromatic ring structures, which can persist in soil for millennia, to 78 more easily degradable aliphatic and oxidised C structures, which mineralise to CO₂ more 79 rapidly through degradation by biotic and abiotic oxidation (Schmidt and Noack, 2000, Cheng et 80 al., 2006; Liang et al., 2008). Increased CO₂ emissions, following biochar addition to soil, have 81 been attributed to increased mineralisation rates in the biochar-amended soil due to (1) 82 mineralisation of applied biochar C (Major et al., 2010a; Smith et al., 2010) or (2) enhanced soil 83 organic C mineralisation (Rogovska et al., 2011). In a two-year experiment, Major et al. (2010a) 84 found that only 3 % of applied biochar C was lost as CO₂, with 75 % of the biochar 85 mineralisation occurring in the first year, which suggested that the stimulatory effects were short-86 term. The stability and resistance of the biochar against oxidation is known to vary depending on 87 the feedstock and pyrolysis procedures and temperatures (Schmidt and Noack, 2000; Liang et al., 88 2008). Mukherjee and Zimmerman (2013) showed that the loss of biochar C, N and P to leaching 89 water correlated with biochar volatile matter content and was greater from biochar made at lower 90 temperatures than from high temperature biochar. Rogovska et al. (2011) found accelerated soil 91 organic C mineralisation with biochar addition to soil, and hypothesised that the increases may 92 be due to (1) increased aerobic microbial activity as a result of higher soil aeration due to the

93 lower bulk density of the biochar-amended soil and (2) enhanced microbial colonisation, causing
94 accelerated decomposition of organic compounds.

95 The long-term effects of biochar can be seen in fertile Anthrosols found around the 96 Amazonian basin. These soils have very high biochar contents due to the charring of forest wood 97 by the indigenous people thousands of years ago (Lehmann et al., 2003). Nutrient leaching has 98 been shown to be minimal from these soils despite their high nutrient content, which has resulted 99 in high soil fertility in contrast to the low fertility adjacent acid soils. Biochar potentially has a 100 superior ability to retain nutrients in comparison to other forms of organic matter (OM) 101 (Lehmann, 2007). Previous experiments have shown that the ability of biochar to retain nutrients 102 in the soil can influence nutrient leaching (Novak et al., 2009; Laird et al., 2010a), nutrient 103 availability (Laird et al. (2010b) and plant growth rates (Asai et al., 2009; Major et al., 2010b). 104 Biochar addition to soil has been shown to influence the concentrations of inorganic-N. 105 organic C and oxygen (O₂) in the soil and, hence, the emissions of nitrous oxide (N₂O) from the 106 soil (Clough et al., 2010; Singh et al., 2010). Nitrous oxide has a global warming potential 107 estimated as being 296 times that of CO_2 (IPCC, 2007). Emissions of N₂O have been reported to 108 either increase (Clough et al., 2010) or decrease (Singh et al., 2010), following biochar 109 application to soil. Singh et al. (2010) found that wood biochar adsorbed ammonium (NH₄) in a 110 soil, thereby reducing the pool of inorganic-N for the N₂O-producing mechanisms. Clough et al. 111 (2010) attributed higher N₂O emissions from biochar-amended soil to greater nitrite (NO₂) 112 concentrations brought about by nitrification inhibitors on biochar, which slowed nitrate (NO_3) 113 formation. Yanai et al. (2007) found an 89 % suppression of N₂O emissions at 73-78 % soil 114 water filled pore space (WFPS) due to the adsorption of water by biochar. However, the same 115 study found a 51 % increase in N₂O emissions at 83 % WFPS. The authors attributed this

116	increase to better soil aeration and the stimulation of N2O-producing activity due to the
117	neutralisation of soil pH. Studies have shown that biochar addition to soil may also influence
118	methane (CH ₄) emissions, which have a global warming potential estimated as being 23 times
119	that of CO ₂ (IPCC, 2007). Soil CH ₄ emissions have been reported to either increase (Zhang et al.,
120	2010) or decrease (Rondon et al., 2005), following biochar addition. Rondon et al. (2005)
121	credited a near complete suppression of CH ₄ , following biochar addition to soil, to a reduction in
122	anaerobic conditions and increased soil aeration. However, in a field experiment in a rice paddy,
123	Zhang et al. (2010) found that soil amended with biochar at 40 tonne ha ⁻¹ increased CH_4
124	emissions by 34 % when N fertiliser was applied, and by 41 % without N fertilization.
125	There are few studies concerning GHG emissions from biochar from feedstocks other
126	than wood, and data from soils outside tropical and subtropical regions are also required
127	(Verheijen et al., 2010). Therefore, the objectives of this study were to investigate CO_2 , N_2O and
128	CH ₄ emissions from Irish tillage soil, amended with biochar derived from either pig manure or
129	wood (Sitka Spruce), with and without fertilisation with pig manure.
120	

130

131 2. Materials and Methods

132 **2.1. Soil Column Preparation**

133 The soil used in this study was an Acid Brown Earth (Regan et al., 2010) collected to a depth of 0.2 m from a tillage farm near Fermoy, County Cork. The 0.2m depth was chosen as 134 135 this is an average plough depth for tillage soil. The soil was air dried, passed through a 2 mm 136 sieve, and mixed to ensure homogeneity. Two types of biochar were used for this study: pig 137 manure biochar and wood biochar. Pig manure biochar was produced from the solid fraction of pig manure after anaerobic digestion, which had been separated using a decanter centrifuge. The 138

139 separated manure was then mixed with Sitka Spruce (Picea sitchensis) sawdust (at a 4:1 ratio by 140 wet weight), dried, and subjected to slow pyrolysis in a custom-built laboratory pyrolysis reactor 141 operated at 600 °C, with a residence time of 15 minutes. After pyrolysis, the biochar was moved 142 to a cooling area of the reactor before removal from the reactor. Sawdust was added to the 143 manure as separation, drying and pyrolysis of pig manure alone is not economically viable, and 144 does not produce a positive energy balance (Troy et al., unpublished results). Wood biochar was 145 produced by slow pyrolysis of Sitka Spruce (*Picea sitchensis*) wood in a large-scale pyrolysis 146 reactor at 600 °C and a residence time of 15 minutes. Both biochars were ground to pass through 147 a 2 mm sieve. The characteristics of the biochars are given in Table 1. 148 Soil columns were constructed using 0.3 m-deep and 0.104 m-internal diameter pipes, 149 which were sealed at the base with perforated PVC end-caps to ensure that the soil remained 150 free-draining. Pea gravel from a commercial supplier, manually sieved to a particle size of 151 between 5 and 10 mm, was placed at the base of each column to a depth of 0.05 m. The three 152 treatments (n=8) examined in this study were: (1) non-amended soil (the study control) (2) soil 153 mixed with pig manure biochar (PM600) and (3) of soil mixed with wood biochar (W600). 154 Batches of air-dried sieved soil (<2 mm) were mixed with sieved biochar (<2 mm) at biochar application rates equivalent to 18 t ha^{-1} to a soil depth of 0.2 m. The unamended columns 155 156 contained 1868 g of soil (dry weight), while the biochar-amended columns contained 1868 g of 157 soil and 15.3 g biochar (dry weight). Distilled water was added to bring the mixtures to a water 158 content (WC) of approximately 26 % (the WC of the soil in the field at the time of sampling), 159 and the mixture was thoroughly mixed by hand. The soil was packed in 0.05-m-depth increments (with a dry bulk density of 1.1 g cm⁻¹ equivalent to field conditions) to ensure uniform packing 160 161 of soil, to a total depth of 0.2 m. The soil columns were incubated at a constant temperature (10

162 ^oC) and relative humidity (75 %), based on typical climatic conditions in Ireland (Walsh, 2012). 163 All columns were leached with 160 mL of distilled water, applied twice weekly in two 80-mL doses over two hours. This is equivalent to 980 mm of rainfall yr⁻¹, which is in the mid-range of 164 165 average annual rainfall amounts in Ireland (Walsh, 2012). Following 10 weeks of incubation, pig 166 manure, collected from an integrated pig farm in Fermoy, Co. Cork, was applied to the surface of four columns of each treatment at a rate equivalent to 170 kg N ha⁻¹. This application rate 167 corresponds with the general land spreading limit of 170 kg N ha⁻¹ yr⁻¹ from livestock manure 168 169 imposed by the Irish Statutory Instrument (S.I.) 610 of 2010. The 10-week lag time was applied 170 before manure application to avoid a burst in microbial activity, associated with drying and re-171 wetting of soil during the construction of the columns. Drying and re-wetting of soil has been 172 shown to cause a burst in microbial activity and a sharp increase in C and N mineralisation 173 (Bengtsson et al., 2003; Borken and Matzner, 2009), which would have resulted in artificially 174 high emissions. The characteristics of the pig manure are given in Table 2. The treatments which 175 received pig manure were then known as Control+PM, PM600+PM and W600+PM.

176

177 **2.2. Gas Sampling and Analysis**

Gas analysis began following 10 weeks of incubation (after pig manure application) and continued for 28 days, with samples being taken on Days 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 19, 24 and 28 following pig manure application. The emissions from columns which did not receive pig manure were also sampled on Days 1, 4, 7, 11, 15, 19, 24 and 28. The 10-week lag period before gas sampling began allowed for the effect of drying and re-wetting of the soil on the gaseous emissions to be negated. Large rubber stoppers, placed on top of each column, sealed the headspace (0.08 m) above the soil, which allowed gas samples to be collected from this

headspace *via* rubber septum stoppers, located at the side of each column. As part of the ongoing
watering during the gas analysis, each column was leached with 80 mL of distilled water on
Days 4, 8, 11, 15, 18, 22 and 25. On days when the columns received water, gas samples were
taken 1 hour after water application.

189 Gas was sampled after Singh et al. (2010): ten minutes before sampling, the headspace in 190 the column above the soil was fanned to remove accumulated gases. Then, just before sealing the 191 top of the column with the rubber stopper, the headspace was again fanned gently for 15 seconds 192 and a gas sample (20 ml) was withdrawn from the headspace. This sample represented the zero 193 minute sampling time. Subsequent to sealing the headspace, gas samples were extracted from the 194 enclosed headspace 5, 10 and 20 minutes after the headspace was sealed. These gas samples 195 were immediately injected into pre-evacuated 6-mL Exetainer vials (Labco, Buckinghamshire, 196 UK). This allowed the vials to be over pressurised, removing the possibility of contamination of 197 the samples with external air.

Nitrous oxide and CH₄ were measured in the samples collected at sampling times 0, 10
and 20 minutes using a Shimadzu Gas Chromatographer (GC-2014) (Shimadzu Scientific
Instruments, Maryland, USA). Carbon dioxide was measured in the samples collected at
sampling times 0, 5 and 10 minutes using a Agilent Gas Chromatograph System (7890A)
(Agilent Technologies, California, USA). All GHGs were measured using linear regression.
Fluxes were calculated from the change in headspace concentration over measured period using:

204
$$\frac{dGas}{dt} * 10^{-6} * \frac{V_{chamber}}{R} * \frac{p * 100 * MW}{R} * 10^{6} * \frac{1}{A}$$

205 where: dGas/dt is measured in ppm h⁻¹ to get the change in concentration over time; 206 $V_{chamber}$ is the volume of the chamber used; *p* is atmospheric pressure; *MW* is the molecular

207 weight; *R* is a gas constant, 8314 J mol⁻¹ K⁻¹; *T* is temperature in Kelvin; and A is the area of the 208 chamber.

Each gas was extrapolated over a hectare and converted to the following: kg CO₂-C ha⁻¹ h⁻¹, g CH₄-C ha⁻¹ h⁻¹, g N₂O-N ha⁻¹ h⁻¹, similar to Collins et al. (2011) and Zhang et al. (2010). Negative fluxes of gases indicated uptake of gas by soil and positive fluxes indicated net emissions from the soil. Cumulative fluxes were determined by multiplying each gas flux by the interval between sampling days. These cumulative fluxes were then summed to find the cumulative emissions of each gas over the 28-day sampling period.

216 2.3. Soil and Leachate Analyses

217 Extra soil columns (n=4) were set up so that they could be destructively sampled after 10 weeks 218 of incubation, just before the beginning of the gas analysis. Analyses were conducted at depth 219 increments of 0-0.05, 0.05-0.1, and 0.1–0.2 m below the soil surface. The soil from each depth 220 increment was air-dried and sieved to a particle size of 2 mm, or less, before analyses. The OM 221 content of the soil was determined using the loss on ignition test (B.S.1377-3; BSI, 1990). Soil 222 total C and total N were determined by high temperature combustion using a LECO Truspec CN 223 analyser (LECO Corporation, St. Joseph, MI, USA). Soil pH was determined using a pH probe 224 (WTW, Weilheim, Germany) at a 2:1 ratio of deionised water-to-soil. Bulk density (ρ_b) and total 225 porosity (n) were calculated according to Haney and Haney (2010). Water-filled pore space was 226 estimated from WC, bulk density, and total porosity in accordance with Haney and Haney 227 (2010):

228 $WFPS = \frac{WC * \rho_b}{n}$

229 A sample of leached water was collected from the base of each column once per week 230 during the 28-day gas sampling period. This leachate sample was analysed for total organic C 231 (TOC) and NO₃ to help interpret the C and N cycling processes occurring in the soil columns. 232 Unfiltered leachate samples were analysed for TOC using a BioTector TOC TN TP Analyzer 233 (BioTector Analytical Systems Limited, Cork, Ireland). Sub-samples of leachate were passed 234 through a 0.45 μ m filter and analysed colorimetrically for total oxidised N and NO₂ using a 235 nutrient analyser (Konelab 20, Thermo Clinical Labsystems, Vantaa, Finland). Nitrate was 236 calculated by subtracting NO₂ from total oxidised N.

237

238 **2.4. Statistical Analysis**

239 Emissions data were analyzed using the Statistical Analyses System (SAS Institute, 2004) 240 with each column as the experimental unit. For all analyses, significance was given as p<0.05. 241 The hourly flux of N₂O-N, CO₂-C, and CH₄-C were analysed as repeated measures using a 242 repeated measures ANOVA using the MIXED procedure of SAS with Tukey-Kramer adjustment 243 for multiple comparisons. The dependent variables were: N₂O-N, CO₂-C, and CH₄-C. For all the 244 above analyses, the fixed effects were: treatment, sampling day and column. Sampling day was 245 the repeated measure. Comparison of cumulative emissions of N₂O-N, CO₂-C, and CH₄-C over 246 the 28-day sampling period was performed using the MIXED procedure in SAS. N₂O-N, CO₂-C, 247 and CH₄-C were the dependent variables. Treatment was included as a fixed effect. 248 Soil data were also analyzed using the Statistical Analyses System (SAS Institute, 2004) 249 with each column as the experimental unit. pH, WFPS, OM, N and C contents, and C:N ratio

250 were analysed as repeated measures using the MIXED procedure of SAS with Tukey-Kramer

adjustment for multiple comparisons. The dependent variables were: pH, WFPS, OM, N and C

252	contents, and C:N ratio. For all the above analyses, the fixed effects were: treatment, depth and
253	column. Depth was the repeated measure. Statistical significance was given as $p<0.05$.

255 **3. Results**

256 **3.1 Soil Characteristics**

The characteristics of the soil and soil/biochar mixtures, after 10 weeks of incubation, are given in Table 3. The biochar-amended soils had higher C and OM contents than the Control. There was an increase of between 4 and 7 % in the WFPS of the biochar-amended soils compared with the Control. The N content of the PM600 soil was higher than that of the Control or W600 soils due to the high N content of the applied pig manure biochar (p<0.05). There was no difference in pH between soil treatments (p>0.05).

263

264 **3.2. Nitrous Oxide Emissions**

265 The 28-day N₂O-N flux, illustrated in Figure 1a, remained low from the non-manureamended treatments throughout the study (-0.12 to 0.13 g N₂O-N ha⁻¹ hour⁻¹). The addition of 266 267 biochar to these treatments had no effect on N₂O-N emissions on any particular sampling day 268 (p>0.05). Similarly, there was no difference between non-manure-amended treatments in their 269 cumulative emissions over 28 days (p>0.05) (Figure 2a). The addition of pig manure to the soil 270 influenced N₂O-N emissions: one week following pig manure application, there was a significant 271 increase in N₂O-N emissions from all the manure-amended treatments. The greatest emissions occurred 11 days after manure application (0.89, 1.02 and 0.99 g N₂O-N ha⁻¹ hour⁻¹ for 272 273 Control+PM, PM600+PM and W600+PM, respectively). This compares to emissions of 0.05, 0.07 and 0.07 g N₂O-N ha⁻¹ hour⁻¹ for Control, PM600 and W600, respectively, on Day 11. The 274

275 N_2O -N emissions from the manure-amended treatments decreased rapidly from their peak on 276 Day 11 and returned to the level of the treatments which did not receive manure by Day 19. 277 From Day 19 until the end of the study, the N₂O-N emissions were similar for all treatments 278 (p>0.05).

279 The patterns of N₂O-N emissions were similar for the three manure-amended treatments. 280 There was no difference between N₂O-N emissions from PM600+PM and W600+PM compared 281 with Control+PM on any sampling day (p>0.05). This is due to a high variability between 282 columns in the same treatment. However, over the 28-day sampling period, the cumulative 283 emissions from PM600+PM were significantly higher compared with Control+PM (p<0.05), 284 while W600+PM also tended to have higher N₂O-N emissions than Control+PM (p < 0.1). 285 Cumulative N₂O-N emissions from PM600+PM and W600+PM were 79 and 68 % higher, 286 respectively, than Control+PM. Cumulative emissions from W600+PM and PM600+PM were 287 similar (p=1.0) (Figure 2a). 288 Figure 3 shows the amount of NO₃ leached from each treatment during the 28-day gas 289 sampling period. The quantity of NO_3 leached from the soils was significantly lower from W600 290 and PM600 than the Control (p<0.05), and from W600+PM and PM600+PM compared with 291 Control+PM (p<0.001). The addition of pig manure did not significantly increase the amount 292 NO₃ leached from any of the biochar-amended soils (p>0.05). However, the quality of NO₃ 293 increased significantly from Control+PM compared with the Control (p < 0.01).

294

3.3. Carbon Dioxide Emissions

The CO₂-C emissions, shown in Figure 1b, remained low from the non-manure-amended treatments throughout the study duration (0.03 to 0.54 kg CO₂-C ha⁻¹ hour⁻¹). Soil CO₂-C fluxes

from the manure-amended treatments were significantly higher than the non-manure-amended treatments on the day of manure application (Day 1) (p<0.001), and on Day 1 were 3.5, 3.5 and $4.0 \text{ kg CO}_2\text{-C ha}^{-1} \text{ hour}^{-1}$ for Control+PM, PM600+PM and W600+PM, respectively. However, from Day 4 until the end of the study, there was no significant difference between any treatment (p<0.05). The manure-amended treatments had higher cumulative emissions than the treatments which did not receive manure, largely due to the high CO₂-C emissions on the day of manure application (Figure 2b).

305 The addition of biochar to the non-manure-amended treatments had no effect on CO₂-C 306 emissions on any particular sampling day (p>0.05). However, the biochar-amended treatments 307 had higher cumulative emissions over the 28-day sampling period (p<0.1) (Figure 2b), with 94 308 and 99 kg ha⁻¹ more CO₂-C emitted from PM600 and W600, respectively, compared with the 309 Control. This represents an increase of 87 and 91 % in cumulative emissions of CO₂-C over the 310 sampling period for PM600 and W600, respectively, compared with the Control. The addition of 311 biochar to the manure-amended treatments also had no effect on CO₂-C emissions on any 312 particular sampling day (p>0.05). However, W600+PM had 45 % higher cumulative emissions 313 than Control+PM over the 28-day study period (p<0.1). PM600+PM also had 31 % higher 314 cumulative emissions than Control+PM, but the difference was not significant (p=0.39). 315 Cumulative emissions from W600+PM and PM600+PM were similar (p=0.92) (Figure 2b). 316 Figure 4 shows the amount of TOC leached from each treatment during the 28-day gas 317 sampling period. Leaching of TOC from W600, with and without manure addition, was 318 significantly lower than the Control (p < 0.001), despite the fact that the C content of the W600 319 soil was higher than that of the Control at all depths (Table 3). However, leaching of TOC from 320 PM600 was significantly higher than both the Control and W600, irrespective of whether or not

manure was applied. The addition of pig manure did not increase TOC leaching in any of thetreatments (p>0.05).

323

324 **3.4. Methane Emissions**

325 Similar to the CO₂-C fluxes, the CH₄-C emissions from the pig manure-amended treatments were high on the day of manure application $(108 - 115 \text{ g CH}_4\text{-C ha}^{-1} \text{ hour}^{-1})$, but quickly reduced to 326 327 the levels of the non-pig manure-amended treatments (Figure 1c). From Day 4 until the end of 328 the study, there was no significant difference between the treatments which received manure and 329 those which did not. Emissions of CH_4 -C were low throughout the study, apart from Days 1 and 330 2 for the manure-amended treatments. Excluding these, the flux of CH_4 -C was between -1.6 and 0.9 g ha⁻¹ hour⁻¹ for every treatment on every sampling day. The pig manure-amended treatments 331 332 had significantly greater cumulative emissions than the non-pig manure-amended treatments, due 333 to the high CH₄-C emissions on the day of manure application (p<0.0001) (Figure 2c).

334

335 4. Discussion

336 4.1. Nitrous Oxide Emissions

Nitrous oxide is emitted during the microbial processes of nitrification and denitrification (Bateman and Baggs, 2005; Rivett et al., 2008). The supply of O_2 dictates the contribution of each process to the amount of N_2O emissions (Brady and Weil, 1996; Bateman and Baggs, 2005; Rivett at al., 2008). The rate of denitrification is also influenced by the soil inorganic-N concentrations (especially NO₃) and the presence of dissolved organic C in the soil (Dobbie and Smith, 2001; Rivett et al., 2008). Mineralisation of the organic-N in the pig manure resulted in an increase in inorganic N concentrations in the soil after pig manure application. This increase in inorganic N concentrations and the increase in organic C concentration from the manure resulted
 in the peak in N₂O emissions observed in the manure-amended treatments (Figure 1a).

346 There was no difference in N₂O emissions between the biochar-amended treatments and 347 the Control for the treatments that did not receive pig manure. Emissions of N₂O were low from 348 these columns, indicating low denitrification rates, due to the lack of available inorganic N. 349 However, when pig manure was applied to the soil, the cumulative emissions from biochar-350 amended treatments tended to have higher N₂O emissions than the Control. The quantity of NO₃ 351 leached from the soils amended with biochar was also lower than the Control soil (Figure 3). The 352 addition of biochar to the soil resulted in 46 -50 % reductions in NO₃-N leaching in the manure-353 amended soils, and reductions of 26 - 30 % in the soils which did not receive manure. This 354 result, coupled with the higher N₂O emissions, indicated the occurrence of higher denitrification 355 rates in the biochar-amended treatments. The increase in denitrification can be attributed to (1) 356 higher WFPS and (2) greater organic C availability in the biochar-amended soils. Organic C may 357 be used as an electron donor during denitrification, with the oxygen lost during the 358 denitrification process being used to form CO₂ (Rivett et al., 2008). In a study measuring N₂O 359 losses through denitrification from intact soil cores fertilised with NO₃, Jahangir et al. (2012) 360 found N₂O emissions were significantly increased with the addition of dissolved organic C to the 361 soil. They suggested that adding C sources to the subsoil could increase NO₃ depletion via 362 denitrification (Jahangir et al., 2012). The greater WFPS in the biochar-amended columns may 363 also have resulted in increased denitrification, by causing the development of anaerobic zones 364 within the soil, resulting in reduced aerobic microbial activity (Brady and Weil, 1996; Porporato 365 et al., 2003; Rivett et al., 2008). Denitrification has been shown to be sensitive to soil WFPS. In

366 an incubation study, using arable soil fertilised with ammonium nitrate, Dobbie and Smith 367 (2001) found a 30-fold increase in N_2O emissions by increasing the WFPS from 60 to 80 %. 368 Despite the increase in denitrification with biochar addition to the soil, the overall amount 369 of N lost through N₂O-N emissions is low (<10 % for the manure-amended treatments, <1 % for 370 the non-manure-amended treatments) compared with N lost through NO₃-N leaching. However, 371 biochar addition may also have increased the rate of complete denitrification to N₂ within the 372 soil, although this was not studied in this experiment. Carbon availability in soil has been shown 373 previously to promote the reduction of N_2O to N_2 (Miller et al., 2009). Jahangir et al. (2012) 374 found that the N₂ flux from the top 0.10 m of a soil fertilised with NO₃ was increased by 78 % 375 with the addition of dissolved organic C to the soil. The present study is a laboratory-based study 376 and results may differ to those in the field. The growth of plants in the soil could have a large 377 impact on N₂O emissions, with N uptake by the plants resulting in a reduction in NO₃ available 378 for denitrification.

379

380 **4.2. Carbon Dioxide Emissions**

381 The manure-amended treatments had higher cumulative emissions than the treatments 382 which did not receive manure. This was largely due to the significantly higher emissions of CO_2 383 on the first sampling day. The addition of manure slurries to soil has been shown to cause a 384 short-lived spike in microbial activity and CO₂ emissions (Dumale et al., 2009; Collins et al, 385 2011). The amount of pig manure C mineralised during the sampling period was estimated as the 386 difference between the cumulative CO₂-C emissions from the manure-amended and non-manureamended treatments (Rogovska et al., 2011). Between 150 and 180 kg ha⁻¹ of the total CO₂-C 387 388 emissions were caused by the mineralisation of C in the manure, with no significant difference

between treatments. This corresponds to 44 - 54 % of the total applied manure C being
mineralised in the 28 days after application, with the vast majority of this mineralisation
occurring in the first day. In a column study investigating GHG emissions from pig manure,
Dendooven et al. (1998) reported that 62 % of the C applied in the pig slurry was mineralized
within 28 days, if no priming effect was assumed.

394 The soil CO₂-C emissions from the non-manure-amended treatments show the 395 decomposition of the soil (and biochar) OM and microbial respiration (Collins et al., 2011). The 396 trend for higher CO₂-C emissions from biochar-amended soils than from non-biochar-amended 397 soils is similar to the results of other studies (Major et al., 2010a; Smith et al., 2010; Rogovska et 398 al., 2011). In the current study, the increase in CO₂-C emissions due to the addition of biochar 399 may be due to mineralisation of labile C added with the biochar (Cross and Sohi, 2011), enhanced mineralisation, or priming of the soil organic C (Major et al., 2010a). Priming is the 400 401 accelerated mineralisation of soil OM due to stimulation caused by the addition of a labile C 402 source (Zimmerman et al., 2011). However, in the current study, it is not clear how much CO₂-C 403 emissions came from the biochar C mineralisation and how much came from enhanced 404 mineralisation of soil OM. In a field experiment using biochar applied at 23.2 tonne ha⁻¹, Major 405 et al. (2010a) found that increased CO_2 emissions recorded from the biochar-amended soil were 406 mostly caused by increased non-biochar-C respiration. However, Cross and Sohi (2011) found 407 that higher CO₂ mineralisation in biochar-amended soils was from the utilisation of the small 408 labile component of the biochar, and not from the loss of the native soil OM due to the priming 409 effect of biochar addition. The labile fraction of biochar, which can be easily mineralised in soil, 410 has been shown to depend on the feedstock and pyrolysis conditions used, with higher 411 temperatures, similar to those used in the current study, generally resulting in increased

412 carbonisation and less labile C in the resulting biochar (Bruun et al., 2011; Cross and Sohi,

413 2011). As a result of this reduction in labile C, the priming effect on CO₂ evolution has also been
414 shown to be lower from biochar produced at high temperatures compared with biochar produced
415 at lower temperatures (Zimmerman et al., 2011).

416 In a 500-day column incubation study, Rogovska et al. (2011) found that biochar 417 application significantly increased CO₂ emissions on all sampling days compared with the soil 418 which did not receive biochar. The authors attributed the increase in CO₂ emissions to an 419 accelerated rate of soil OM mineralisation caused by (1) increased soil aeration due to the lower 420 bulk density of the biochar-amended soil, which resulted in higher aerobic microbial activity and 421 (2) enhanced microbial colonisation, causing accelerated decomposition of organic compounds. 422 However, in the current study, the WFPS was higher in the biochar-amended treatments (Table 423 3), which suggested reduced aeration. Therefore, the acceleration in mineralisation rates in the 424 current study was more likely to have been caused by mineralisation of the biochar C. Any 425 increase in CO₂-C emissions corresponding to the increased denitrification rates in the biochar-426 amended treatments between Days 7 and 19 was small compared with the CO₂-C emitted from 427 mineralisation.

The increased CO₂-C emissions from PM600 and W600 compared with the Control represented 0.83 and 0.67 %, respectively, of the total applied biochar C, assuming that there was no priming effect on soil C. This compares to 44 - 54 % mineralisation of the applied manure C, again using the assumption that there were no priming effects. This shows that the application of biochar C to soil leads to a much higher percentage of sequestered C compared with other forms of OM, such as manure, which are quickly mineralised and released as CO₂. In a study using soil amended with both wheat straw and biochar from the slow pyrolysis of wheat straw, Bruun et al. 435 (2012) found that 2.9 % of the biochar C was lost as CO₂ over 65 days of soil incubation, while 436 53 % of wheat straw C was lost. Major et al. (2010a) found that 2.2 % of biochar C was lost by 437 respiration in the first 2 years after soil application. However, the stimulatory effect on CO₂-C 438 emissions, provided by biochar addition, reduced considerably in the second year of the study, 439 suggesting that losses by mineralisation would decrease further with time (Major et al., 2010a). 440 The reduction in TOC leaching in W600 is also attributed to enhanced mineralisation of 441 the organic C in the biochar-amended treatments. The reduction in TOC leaching was not 442 observed in the PM600 treatment compared with the Control due to the high susceptibility of C 443 in manure biochar to leaching. In a study investigating leaching of total dissolved C from 444 biochar, Gaskin et al. (2008) found that leaching of dissolved organic C from poultry manure 445 biochar was seven times higher than that leached from the pine chip biochar. Despite this, the leaching of TOC from all treatments was very low (< 13k kg TOC ha⁻¹, Figure 2) compared with 446 the C lost through mineralisation to CO_2 (100 – 400 kg CO_2 -C ha⁻¹, Figure 4). 447

448

449 **4.3. Methane Emissions**

450 Adding biochar to the soil did not significantly affect daily or cumulative CH₄-C 451 emissions irrespective of whether pig manure was added or not (p>0.05). The pig manure-452 amended treatments had significantly greater CH₄-C emissions on the day of manure application 453 (p<0.0001). Elevated CH₄ emissions in the days following the application of slurry to soil have 454 been shown in previous studies (Chadwick et al., 2000; Sistani et al., 2010; Collins et al., 2011). 455 These elevated CH₄ emissions are attributed to the release of dissolved CH₄-C produced during 456 storage of the manure prior to application (Collins et al., 2011). These results differ to previous results, which reported both increases (Zhang et al., 2010) and decreases (Rondon et al., 2005) in 457

CH₄ emissions following biochar addition. Reductions in anaerobic conditions were credited
with the near complete suppression of CH₄, following biochar addition to soil, in a study by
Rondon et al. (2005). In the current study, biochar addition was shown to increase WFPS,
therefore, increasing anaerobic conditions. However, the addition of biochar to soil did not cause
an increase or a reduction in CH₄ emissions in this study.

463

464 **4. Conclusions**

The application of pig manure to soil increased GHG emissions. Although the peak effluxes occurred at various times after manure application (on the day after application for CO_2 and CH_4 emissions, and at 11 days for N₂O emissions), the emissions of all measured gases from the pig manure-amended soils had reduced to that of the non-manure-amended soils by the end of the study.

470 The addition of biochar to the soil increased N₂O emissions (only when pig manure was 471 also added) and CO₂ emissions (with and without pig manure addition). Increased N₂O emissions 472 resulted from increased denitrification in the biochar-amended columns, caused by a higher 473 WFPS and organic C contents. The increased denitrification rates also resulted in reduced NO₃-N 474 leaching from the biochar-amended columns. The increase in CO_2 emissions with biochar 475 addition was most likely due to increased rates of C mineralisation in these columns. This may 476 have been due to mineralisation of the labile biochar C or through increased mineralisation of the 477 soil organic matter. Amendment of the soil with biochar had no effect of CH₄ emissions. 478 The greenhouse gas emissions in this study were examined over a time period of one 479 month following manure application. Longer-term studies would be necessary to give a true

480 picture of the overall effect of biochar addition on soil greenhouse gas emissions.

482 Acknowledgements

483	This research was funded by the Irish Department of Agriculture, Food and Fisheries'
484	Research Stimulus Fund Programme under the National Development Plan 2007-2013. Shane
485	Troy's PhD was funded by the Teagasc Walsh Fellowship Scheme. The authors would like to
486	thank Dr. Gary Lanigan and Cathal Somers, from Teagasc Johnstown Castle, for their assistance
487	with this work.
488	
489	
490	
491	
492	
493	
494	
495	
496	
497	
498	
499	
500	
501	
502	
503	

505	Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Inoue, Y., Shiraiwa, T., Horie,
506	T., 2009. Biochar amendment techniques for upland rice production in Northern Laos:
507	soil physical properties, leaf SPAD and grain yield. Field Crops Research 111, 81-84.
508	Bateman, E.J., Baggs, E.M., 2005. Contributions of nitrification and denitrification to N_2O
509	emissions from soils at different water-filled pore space. Biology & Fertility of Soils 41,
510	379-388.
511	Bengtsson, G., Bengtson, P., Mansson, K.F., 2003. Gross nitrogen mineralization,
512	immobilization, and nitrification rates as a function of soil C/N ratio and microbial
513	activity. Soil Biology & Biochemistry 35, 143-154.
514	Borken, W., Matzner, E., 2009. Reappraisal of drying and wetting effects on C and N
515	mineralization and fluxes in soils. Global Change Biology 15, 808-824.
516	Brady, N.C., Weil, R.R., 1996. The Nature and Properties of Soils, eleventh ed. Prentice-Hall,
517	New Jersey.
518	Bruun, E.W., Hauggaard-Nielsen, H., Ibrahim, N., Egsgaard, H., Ambus, P., Jensen, P.A.,
519	Dam-Johansen, K., 2011. Influence of fast pyrolysis temperature on biochar labile
520	fraction and short-term carbon loss in a loamy soil. Biomass and Bioenergy 35, 1184-
521	1189.
522	Bruun, E.W., Ambus, P., Egsgaard, H., Hauggaard-Nielsen, H., 2012. Effects of slow and fast
523	pyrolysis biochar on soil C and N turnover dynamics. Soil Biology & Biochemistry 46,
524	73-79

525	Bruun, E.W., Hauggaard-Nielsen, H., Norazan, I., Egsgaard, H., Ambus, P., Jensen, P.A., Dam-
526	Johansen, K., 2012. Influence of fast pyrolysis temperature on biochar labile fraction and
527	short-term carbon loss in a loamy soil. Biomass & Bioenergy 35, 1182-1189.
528	BSI, 1990. BS 1377-3:1990. Method of tests for soils for civil engineering purposes – part 3:
529	chemical and electro-chemical tests. British Standards Institution, London.
530	Chadwick, D.R., Pain, B.F., Brookman, S.K.E., 2000. Nitrous oxide and methane emissions
531	following application of animal manures to grassland. Journal of Environmental Quality
532	29, 277-287.
533	Cheng, C.H., Lehmann, J., Thies, J.E., 2006. Oxidation of black carbon by biotic and abiotic
534	processes. Organic Geochemistry 37, 1477-1488.
535	Clough, T.J., Bertram, J.L., Ray, J.L., Condron, L.M., O'Callaghan, M., Sherlock, R.R., Wells,
536	N.S., 2010. Unweathered biochar impact on nitrous oxide emissions from a bovine-urine-
537	amended pasture soil. Soil Science Society of America Journal 74, 852-860.
538	Collins, H.P., Alva, A.K., Streubel, J.D., Fransen, S.F., Frear, C., Chen, S., Kruger,
539	C., Granatstein, D., 2011. Greenhouse gas emissions from an irrigated silt loam soil
540	amended with anaerobically digested dairy manure. Soil Science Society of America
541	Journal 75, 2206-2216.
542	Cross, A., Sohi, S.P., 2011. The priming potential of biochar products in relation to labile carbon
543	contents and soil organic matter status. Soil Biology & Biochemistry 43, 2127-2134.
544	Dendooven, L., Bonhomme, E., Merckx, R., Vlassak, N., 1998. N dynamics and sources of N ₂ O
545	production following pig slurry application to a loamy soil. Biology & Fertility of Soils
546	26, 224-228.

547	Dobbie, K.E., Smith, K.A., 2001. The effects of temperature, water-filled pore space and land
548	use on N ₂ O emissions from an imperfectly drained gleysol. European Journal of Soil
549	Science 52, 667-673.

- Dumale, W.A., Miyazaki, T., Nishimura, T., Seki, K., 2009. Carbon dioxide evolution and short term carbon turnover in stable soil organic carbon from soils applied with fresh organic
 matter. Geophysical Research Letters 36, L01301.
- 553 Gaskin, J.W., Steiner, C., Harris, K., Das, K.C., Bibens, B., 2008. Effect of low-temperature
- pyrolysis conditions on biochar for agricultural use. Transactions of the American
 Society of Agricultural and Biological Engineers 51, 2061-2069.
- 556 Gaunt, J.L., Lehmann, J., 2008. Energy balance and emissions associated with biochar
- sequestration and pyrolysis bioenergy production. Environmental Science & Technology
 42, 4152-4158.
- Haney, R.L., Haney, E.B., 2010. Simple and rapid laboratory method for rewetting dry soil for
 incubations. Comms. Soil Science and Plant Analysis 41, 1493–1501.
- 561 IPCC. Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to
- the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In:
- 563 Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., et al., (Eds.),
- Intergovernmental Panel on Climate Change. Global Climate Projections. Cambridge
 University Press, Cambridge.
- 566 Jahangir, M.M.R., Khalil, M.I., Johnston, P., Cardenas, L.M., Hatch, D.J., Butler, M., Barrett,
- 567 M., O'Flaherty, V., Richards, K.G., 2012. Denitrification potential in subsoils: A

568	mechanism to reduce nitrate leaching to groundwater. Agriculture, Ecosystems and
569	Environment, 147, 13-23.
570	Laird, D.A., Fleming, P., Wang, B., Horton, R., Karlen, D.L., 2010a. Biochar impact on
571	nutrient leaching from a Midwestern agricultural soil. Geoderma 158, 436-442.
572	
573	Laird, D.A., Fleming, P., Davis, D.D., Horton, R., Wang, B., Karlen, D.L., 2010b. Impact of
574	biochar amendments on the quality of a typical Midwestern agricultural soil.
575	Geoderma 158, 443-449.
576	Lehmann, J. 2007. Bio-energy in the black. Frontiers in Ecology and the Environment 5, 381-
577	387.
578	Lehmann, J., da Silva, J.P. Jr, Steiner, C., Nehls, T., Zech, W., Glaser, B., 2003. Nutrient
579	availability and leaching in an archaeological Anthrosol and a Ferrasol of the Central
580	Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil 249 343-
581	357.Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J.E., Skjemstad, J.O., Luizao,
582	F.J., Engelhard, M.H., Neves, E.G., Wirick, S., 2008. Stability of biomass-derived black
583	carbon in soils. Geochimica et Cosmochimica Acta 72, 6069–6078
584	Major, J., Lehmann, J., Rondon, M., Goodale, C., 2010a. Fate of soil-applied black carbon:
585	downward migration, leaching and soil respiration. Global Change Biology 16, 1366-
586	1379.
587	Major, J., Rondon, M., Molina, D., Riha, S.J., Lehmann, J., 2010b. Maize yield and nutrition
588	during 4 years after biochar application to a Colombian savanna Oxisol. Plant and Soil
589	333, 117-128.

590	Miller, M.N., Zebarth, B.J., Dandie, C.E., Burton, D.E., Goyer, C., Trevors, J.E., 2009. Influence
591	of liquid manure on soil denitrification abundance, denitrification, and nitrous oxide
592	emissions. Soil Science Society of America Journal 73, 760-768.
593	Mukherjee, A., Zimmerman, A.R., 2013. Organic carbon and nutrient release from a range of
594	laboratory-produced biochars and biochar-soil mixtures. Geoderma 193-194, 122-130.
595	Novak, J.M., Busscher, W.J., Laird, D.A., Ahmedna, M., Watts, D.W., Niandou, M.A.S.,
596	2009. Impact of biochar amendment on fertility of a south-eastern coastal plain soil. Soil
597	Science 174, 105-112.
598	Porporato, A., Odorico, P.D., Laio, F., Rodriguez-Iturbe, I., 2003. Hydrologic controls on soil
599	carbon and nitrogen cycles. I. Modelling scheme. Advances in Water Resources 26, 45-
600	58.
601	Regan, J.T., Rodgers, M., Kirwan, L., Fenton, O., Healy, M.G., 2010. Determining phosphorus
602	and sediment release rates from five Irish tillage soils. Journal of Environmental Quality
603	39, 185-192.
604	Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W.N., Bemment, C.D., 2008. Nitrate attenuation
605	in groundwater: A review of biogeochemical controlling processes. Advances in Water
606	Resources 42, 4215-4232.

Roberts, K.G., Gloy, B.A., Joseph, S., Scott, N.R., Lehmann, J., 2010. Life cycle assessment of
biochar systems: estimating the energetic, economic, and climate change potential.

609 Environmental Science & Technology 44, 827-833.

610	Rogovska, N., Laird, D., Cruse, R., Fleming, P., Parkin, P., Meek, D., 2011. Impact of biochar
611	on manure carbon stabilisation and greenhouse gas emissions. Soil Science Society of
612	America Journal 75, 871-879.
613	Rondon, M., Ramirez, J., Lehmann, J., 2005. Charcoal additions reduce net emissions of
614	greenhouse gases to the atmosphere. In: Proceedings of the 3rd Symposium on
615	Greenhouse Gases and Carbon Sequestration. 21-24 March, USDA, Baltimore, pp. 208.
616	SAS Institute, 2004. 9.1.3 Service Pack 4 Copyright (c) 2002-2003. SAS Institute Inc., North
617	Carolina.
618	Schmidt, M.W.I., Noack, A.G., 2000. Black carbon in soils and sediments: analysis, distribution,
619	implications, and current challenges. Global Biogeochemical Cycles 14, 777-794.
620	Singh, B.P., Hatton, B.J., Singh, B., Cowiw, A.L., Kathuria, A., 2010. Influence of biochars on
621	nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of
622	Environmental Quality 39, 1224-1235.
623	Sistani, K.R., Warren, J.G., Lovanh, N., Higgins, S., Shearer, S., 2010. Greenhouse gas
624	emissions from swine effluent applied to soil by different methods. Soil Science Society
625	of America Journal 74, 429-435.
626	Smith, J.F., Collins, H.P., Bailey, V.L., 2010. The effect of young biochar on soil respiration.
627	Soil Biology & Biochemistry 82, 2345-2347. Verhejien, F., Jeddery, S., Bastos, A., van
628	der Velde, C.M., Diafas, I., 2010. Biochar Application to Soils. A Critical Scientific
629	Review of Effects on Soil Properties, Processes and Functions., European Commission
630	Joint Research Centre Scientific and Technical Reports, Institute for Environment and
631	Sustainability, Luxembourg.

632	Walsh, S., 2012. A summary of climate averages for Ireland 1981-2010. Met Eireann, Dublin.
633	Yanai, Y., Toyota, K., Okazaki, M., 2007. Effects of charcoal addition on N2O emissions from
634	soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil
635	Science & Plant Nutrition 53,181-188.
636	Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., Crowley, D., 2010. Effect
637	of biochar amendment on yield and methane and nitrous oxide emissions from a rice
638	paddy from Tai Lake plain, China. Agriculture Ecosystems & Environment 139, 469-
639	475.
640	Zimmerman, A.R., Gao, B., Ahn, M-Y, 2011. Positive and negative carbon mineralization
641	priming effects among a variety of biochar-amended soils. Soil Biology and
642	Biochemistry 35, 1182-1189.
643	
644	
645	
646	
647	
648	
649	
650	
651	
652	

		Pig manure biochar	Wood biochar	Soil
	Organic Matter $(\%_{db})^1$	72.5 ± 0.78	97.0 ± 1.24	4.62 ± 0.013
	Ash Content (% _{db})	27.5 ± 0.78	3.0 ± 1.24	95.38 ± 0.013
	Bulk Density (g cm ⁻³)	0.19 ± 0.020	0.18 ± 0.016	1.10 ± 0.010
	Total N (% _{db})	2.67 ± 0.042	0.42 ± 0.024	0.21 ± 0.008
	Total C (% _{db})	62.7 ± 1.30	82.0 ± 1.15	1.75 ± 0.049
	pН	9.6 ± 0.34	9.3 ± 0.19	6.9 ± 0.20
654	¹ db, dry basis; ² SD, sta	indard deviation		
655				
656				
657				
658				
659				
660				
661				
662				
663				
664				
665				
666				
667				
668				

Table 1: Characteristics of the biochars and soil used in the column experiment $(Means \pm SD)^2$

		Total applied		
	kg m ⁻³	kg ha ⁻¹	mg column ⁻¹	
Dry Matter	21.0 ± 0.98	1214	1030	
Total N	2.94 ± 0.156	170	144	
NH ₄ -N	1.74 ± 0.08	78.2	66.4	
Total C	5.86 ± 0.08	340	289	
¹ SD, standar	d deviation			

669 Table 2: Characteristics of the pig manure added to the soil $(Means \pm SD)^1$

	Depth	Control	PM600	W600	s.e.	р
WFPS $(\%)^1$	0-5	61.6 ^a	63.7 ^{ab}	65.6 ^b	0.45	< 0.001
	5-10	63.6 ^a	67.5 ^b	67.8 ^b	0.45	< 0.001
	10-20	69.9 ^a	73.5 ^a	73.1 ^a	0.45	< 0.001
Organic Matter $(\%_{db})^2$	0-5	4.89 ^a	5.14 ^{ab}	5.28 ^b	0.02	< 0.001
	5-10	4.88 ^a	5.18 ^b	5.20 ^b	0.02	< 0.001
	10-2	4.85 ^a	5.26 ^b	5.18 ^b	0.02	< 0.001
Carbon (% _{db})	0-5	1.81 ^a	2.25 ^b	2.42 ^b	0.035	< 0.001
	5-10	1.80 ^a	2.30 ^b	2.45 ^b	0.035	< 0.001
	10-20	1.81 ^a	2.29 ^b	2.39 ^b	0.035	< 0.001
Nitrogen (% _{db})	0-5	0.217 ^{ab}	0.227 ^b	0.206 ^a	0.0020	< 0.001
	5-10	0.181 ^a	0.203 ^b	0.176 ^a	0.0020	< 0.001
	10-2	0.172 ^a	0.194 ^b	0.170 ^a	0.0020	< 0.001
C:N ³	0-5	8.34 ^a	9.90 ^{ab}	11.75 ^b	0.338	< 0.001
	5-10	9.92 ^a	11.31 ^{ab}	13.91 ^b	0.338	< 0.001
	10-20	10.52 ^a	11.81 ^b	14.08 ^b	0.338	< 0.001
рН	0-5	7.23	7.24	7.11	0.127	0.245
	5-10	7.34	7.33	7.20	0.127	0.245
	10-20	7.42	7.39	7.23	0.127	0.245

Table 3: Characteristics of the soil (Control), and the soil and biochar mixes (PM600 and W600)

for 3 sampling depths (cm below surface) after 10 weeks of soil incubation and leaching, before

688 pig manure was applied

686

687

⁶⁸⁹ ¹ WFPS, water filled pore space; ² db, dry basis; ³ C:N, carbon to nitrogen ratio;

690	Cantions	for	Figures
070	Captions	101	riguito

691 Figure 1: Emissions of N₂O-N (a) CO₂-C (b) and CH₄-C (c) from soil amended with biochar.

692 Control = soil only. PM600 = soil + pig manure biochar. W600 = soil + wood biochar.

693 Treatments amended with the pig manure are shown with (+PM). Error bars show standard

694 deviation.

695

696 Figure 2: Cumulative emissions of N₂O-N (a) CO₂-C (b) and CH₄-C (c) from soil amended with

697 biochar. Control = soil only. PM600 = soil + pig manure biochar. W600 = soil + wood biochar.

698 Treatments amended with the pig manure are shown with (+PM). Error bars show standard

699 deviation.

700

Figure 3: Cumulative leaching of NO₃-N during the 4 weeks of gas sampling. Control = soil only. PM600 = soil + pig manure biochar. W600 = soil + wood biochar. Treatments amended with the pig manure are shown with (+PM). Error bars show standard deviation.

704

Figure 4: Cumulative leaching of TOC during the 4 weeks of gas sampling. Control = soil only.
PM600 = soil + pig manure biochar. W600 = soil + wood biochar. Treatments amended with the
pig manure are shown with (+PM). Error bars show standard deviation.

- 709
- 710
- 711
- 712

