1	Published as: Brennan, R.B., Fenton, O., Rodgers, M., Healy, M.G. 2011. Evaluation of
2	chemical amendments to control phosphorus losses from dairy slurry. Soil Use and
3	Management 27(2): 238-246. doi: 10.1111/j.1475-2743.2011.00326.x
4	
5	Evaluation of chemical amendments to control phosphorus losses from dairy slurry.
6	R.B. Brennan ¹ , O. Fenton ² , M. Rodgers ¹ , M.G. Healy ^{1*}
7	¹ Department of Civil Engineering, National University of Ireland, Galway, Co. Galway,
8	Rep. of Ireland.
9	² Teagasc, Johnstown Castle, Environmental Research Centre, Co Wexford, Rep. of
10	Ireland
11	
12	* Corresponding author. Tel: +353 91 495364; fax: +353 91 494507. E-mail address:
13	mark.healy@nuigalway.ie
14	
15	RUNNING HEAD TITLE:
16	
17	Chemical amendments to control phosphorus
18	
19	
20	
21	
22	
23	
24	

- 25 Abstract
- 26

27 The aim of this paper is to identify chemicals with the potential to reduce P losses from 28 agricultural grassland arising from the land application of dairy cattle slurry. It also aims 29 to identify optimal application rates and to estimate associated costs. The cost of 30 chemical amendments was estimated based on cost of chemical, chemical delivery, 31 addition of chemical to slurry, volume increases during slurry agitation, and slurry 32 spreading costs. First, batch tests were carried out to identify appropriate chemical and 33 phosphorus sorbing materials (PSMs) to be considered as potential amendments to 34 control P in runoff from dairy cattle slurry. Then, the best seven treatments were 35 examined in a novel agitator test. Optimum application rates were selected based on 36 percentage removal of dissolved reactive phosphorus (DRP) in overlying water and the 37 estimated cost of amendment. At optimum application rates, alum reduced the DRP in 38 overlying water by 94%, aluminium chloride (AlCl₂) by 92%, ferric chloride (FeCl₂) by 39 88%, lime by 81%, aluminium water treatment residuals (Al-WTR; sieved to <2mm) by 40 77%, Al-WTR sludge by 71%, flyash by 72%, and flue gas desulphurisation by-product 41 by 72%. Alum was the most cost-effective chemical amendment, and was capable of 42 greater than 90% reduction in soluble P in overlying water. The optimum FeCl₂ 43 amendment was less expensive, but not quiet as effective. AlCl₂ and lime are expensive, 44 and despite the attractiveness of using PSM, those examined were not cost effective at P 45 reductions of greater than 85%. 46

Keywords: Water treatment residual; alum; aluminium chloride; ferric chloride; lime; flue
gas desulphurisation by-product; flyash.

49

50 Introduction

51

52 Repeated application of organic and mineral fertilizer causes soil test phosphorus (STP) 53 to build up in the soil and, during rainfall events, may cause nutrients to be released to 54 surface runoff (Hao et al., 2008). Runoff from grassland pastures and meadow fields 55 following slurry application can result in incidental phosphorus (P) losses and has the 56 potential to transport nutrients to surface water (Smith et al., 2001a). This may result in 57 eutrophication of rivers and fresh water lakes. 58 59 Chemical amendments can either be added directly to the manure before land application 60 (Moore et al., 1998), spread on the ground before manure application (McFarland et al., 61 2003), or incorporated into the ground (Novak and Watts, 2005). 62 Aluminium (Al) compounds are the preferred amendment, as calcium phosphate minerals 63 64 are not as stable (Moore et al., 1998), and ferrous compounds can break down in acidic 65 soil conditions (Smith et al., 2001b). To date, work involving alum addition to dairy 66 cattle slurry has been largely limited to laboratory batch studies.

68	Novak and Watts (2005) incorporated aluminum water treatment residuals (Al-WTR)
69	into the upper 15 cm of topsoil at a 1-6% soil volume. This lowered water extractable P
70	(WEP) in the soil by between 45% and 91% after an 84-d incubation period.
71	
72	Coal combustion by-products have potential to mitigate P loss from soil following
73	manure application (Dao, 1999). Stout et al. (1998) reported that by blending flyash with
74	soil at 0.01 kg/kg soil, Mehlich-III P (M3-P) and WEP were lowered by 13% and 71%,
75	respectively. Flue gas desulphurisation (FGD) by-product, applied at 0.01 kg/kg soil,
76	lowered M3-P by 8% and WEP by 48%.
77	
78	McGrath et al. (2010) examined the sorption and retention mechanisms of several PSMs
79	and found the degree of sorption to be strongly influenced by the solution pH, buffer
80	capacity, and ionic strength of amendments.
81	
82	Present agricultural practice is governed by The European Communities (Good
83	Agricultural Practice for Protection of Waters) Regulations 2009 (S.I. No. 101 of 2009),
84	drafted to comply with the Nitrates Directive (91/676/EEC; EEC, 1991). The Water
85	Framework Directive (WFD; 2000/60/EC, OJEC, 2000) recommends research and
86	development of new pollution mitigation measures to achieve the 2015 target of surface
87	and groundwaters of 'good status'. Therefore, there is potential that chemical treatment of
88	dairy cattle slurry maybe used to control P in Ireland.
89	

90	The 'agitator test' is a simple and effective test that has been be used to investigate the
91	release of P from soil (Mulqueen et al., 2004). This test was chosen to evaluate the
92	effectiveness of the chemical amendments in reducing incidental soluble P loss from
93	slurry as it is more realistic than traditional batch-type experiments.
94	
95	The objectives of this study were to use the agitator test: (i) to determine if there is
96	potential use of chemical amendments to reduce P loss from the soil surface after land
97	application of dairy cattle slurry; (ii) to identify optimum amendment application rates;
98	(iii) to evaluate the feasibility of these treatments, and to estimate the cost of each
99	treatment.
100	
101	Materials and Methods
102	
103	Soil preparation and analysis
104	
105	The soil samples used in this study were taken from a local dry stock, extensively
106	operated farm with undulating terrain. 120-mm-high, 100-mm-diameter aluminium
107	coring rings were used to collect the samples. The grass was left intact and all soil cores
108	were stored at 11°C in a cold room prior to testing. All agitator tests were carried out
109	within 21 d of sample collection and tests were conducted in triplicate (n=3).
110	
111	Soil samples – taken from the same location - were air dried at 40 $^{\circ}$ C for 72 hr, crushed to
112	pass a 2 mm sieve, and analysed for P using MP-3 extracting solution (Mehlich, 1984)

113	and Morgan's P using Morgan's extracting solution (Bourke et al., 2007). Soil pH was
114	measured in triplicate after Bourke et al. (2007). Shoemacher-McLean-Pratt (SMP) buffer
115	pH was determined and the lime requirement (LR) of the soil was calculated after Pratt
116	and Blair (1963). Particle size distribution (PSD) was determined using B.S.1377-2:1990
117	(BSI, 1990a). Organic content of the soil was determined using the loss of ignition (LOI)
118	test (B.S.1377-3; BSI, 1990b).
119	
120	Slurry sampling and analysis
121	
122	Dairy cattle slurry from replacement heifers was used in this study. The slurry tanks were
123	agitated until the slurry was homogenized, and slurry samples were collected in 10-L
124	drums and transported to the laboratory. Slurry samples were stored at 4°C until
125	immediately prior to the start of the agitator test. Slurry pH was determined using a pH
126	probe (WTW, Germany) at 0 hr and 24 hr. The WEP of slurry was measured after 24 hr
127	after Kleinman et al. (2007). The total phosphorus (TP) of the dairy cattle slurry was
128	determined after Byrne (1979). Potassium (K) and magnesium (Mg) were analyzed using
129	an On varian Spectra 400 Atomic Absorption instrument, and analyses for nitrogen (N)
130	and P were carried out colorimetrically using an automatic flow-through unit.
131	
132	Analyses of PSMs
133	
134	The pH of the PSMs was measured in triplicate using 2:1 deionised water: dry
135	amendment ratio after Bourke et al. (2007). In the case of the Al-WTR sludge, it was

136	possible to measure pH of the sludge with a pH probe. Dry matter (DM) content was
137	determined by drying at 40°C for 72 hr. Total metal and P of the PSMs was measured by
138	'aqua regia' digestion using a Gerhard Block digestion system (Cottenie & Kiekens,
139	1984), which is described by Fenton et al. (2009). WEP of the PSMs was determined
140	after Dayton and Basta (2001).
141	
142	Slurry treatment
143	
144	Tests were carried out to determine the effectiveness of various chemical amendments to
145	treat the dairy cattle slurry. The best seven P-sorbing amendments were examined in the
146	agitator test; these were: industrial grade alum (8% Al ₂ O ₃ , Al ₂ (SO ₄) ₃ .nH ₂ O); laboratory
147	grade aluminium chloride (AlCl _{3.} 6H ₂ O); FeCl ₂ ; burnt lime (Ca(OH) ₂); Al-WTR, sieved
148	to less than 2 mm (Al-WTR-1); Al-WTR homogenised sludge (Al-WTR-2); flyash; and
149	FGD (Table 1). Chemical amendments were applied based on Al:TP stoichiometric rate,
150	and PSMs were applied based on a kg/kg weight basis (slurry dry matter). The Al-WTR
151	was obtained from a local water treatment plant (WTP) and the coal combustion by-
152	products were provided by the Electricity Supply Board (ESB) at Moneypoint, Co. Clare.
153	
154	The pH of the amended slurry was measured prior to application at t=0 hr. Samples were
155	taken to determine DM and WEP of the amended slurry (after Kleinman et al., 2007).
156	Slurry and amended slurry were applied to surface of the grassed soil at a rate equivalent
157	to 40 kg TP/ha (50 m^3 slurry/ha). For each treatment, slurry samples (n=3) with the same

158 volume as applied to the grass sample in the agitator test were spread at the bottom of a

beaker to allow pH and WEP to be measured at 24 hr without disturbing the sample usedin the agitator test.

161

162 Agitator test

163

164 Prior to the start of the agitator test, the intact soil samples were transferred into the

beakers. The depth of soil in the beakers ranged from 40 mm to 50 mm; this was

166 considered sufficient to include the full depth of influence (Mulqueen et al., 2004).

167

168 The agitator test comprised 10 different treatments: a grassed sod-only treatment (the 169 study control); grassed sod receiving dairy cattle slurry at a rate equivalent to 40 kg 170 TP/ha, and grassed soil receiving 8 different chemically treated slurries (Table 1) applied 171 at a rate equivalent to 40 kg TP/ha. Each of the 8 amendments were applied at 3 different 172 rates (high, medium and low) in triplicate (n=3). The chemically amended slurry was 173 initially applied to the soil (t=0 hr), and was then allowed to interact for 24 hr prior to 174 saturation of the sample. After 24 hr (t=24 hr), samples were saturated by gently adding 175 deionised water to the soil sample at intermittent time intervals until water pooled on the 176 surface. The sample was saturated for 24 hr (t=48 hr). Immediately after saturation was 177 complete, 500 ml of deionised water was added to the beaker. The agitator paddle was 178 then lowered to mid-depth in the overlying water and rotated at 20 rpm for 24 hr. 179

180 Water sampling and analysis

181

182	Water samples (4 ml) were taken at 0.25, 0.5, 1, 2, 4, 8, 12 and 24 hr after the start of the
183	test. All samples were filtered immediately after sample collection using 0.45 μ m filters
184	and placed in a freezer (after APHA, 1995) prior to being analysed colorimetrically for
185	DRP using a nutrient analyser (Konelab 20, Thermo Clinical Labsystems, Finland). The
186	DRP concentrations were used to calculate the mass of DRP in the water overlying the
187	soil samples in the beaker, taking into account the water volume reduction as the test
188	progressed. All water samples were tested in accordance with standard methods (APHA,
189	1995).
190	
191	Statistical Analysis
192	
193	The results were analysed using SAS (SAS Institute, 2004). Proc Mixed was used to
194	model the factorial structures (amendment x application rate; and amendment x
195	application rate x time) in the experiment in order to allow for heterogeneous variance
196	across treatments. A group variable was fitted to allow comparisons between the control
197	treatments and the factorial combinations. A multiple comparisons procedure (Tukey)
198	was used to compare means.
199	
200	Results and Discussion
201	
202	Soil analysis results
203	

204	The soil used in this study had a M3-P concentration of 107±2.8 mg P/kg, Morgan's P
205	concentration of 12.3 \pm 0.49 mg/L and a soil pH of 5.6 \pm 0.1. The SMP buffer pH of the
206	soil was 6.1 \pm 0.2 and the LR was calculated to be 9.9 \pm 1 t/ha. The soil used in this study
207	comprised 15% gravel, 72% sand, and 13% fines, and had an organic matter content of
208	16.2±0.2%.
209	
210	Slurry and by-product analyses
211	
212	Slurry used had TN of 3982±274 mg/L, TP of 803±37 mg/L, TK of 4009±482 and pH of
213	7.3±0.1. Slurry WEP values at 24 hr are tabulated in Table 1.
214	
215	Table 2 shows the properties of the PSMs used in this study, the load of metals per
216	hectare for optimum treatment, the maximum permissible annual average rates of addition
217	of certain heavy metals to mineral and organic soils over a 10-yr period, and the limits on
218	metal concentrations for potable water abstraction.
219	
220	In a 20-yr plot study, Moore and Edwards (2005) found that after 10 yr, exchangeable Al
221	was lower in plots fertilized with untreated litter and alum-treated litter than in plots
222	receiving NH ₄ NO ₃ . Soil pH, and not the total Al content, controls Al availability.
223	Therefore, repeated alum treatment will not lead to an increase in Al availability.
224	
225	

226 Effectiveness of chemical amendments and PSMs in reducing DRP in overlying

227 water.

228

229 The overall statistical analysis showed that there was a significant interaction between 230 treatment and application rate, but that the interaction effects were small compared to the 231 main effects. Comparisons of means were made from the interaction table. Figure 1 232 shows the mass of DRP in the water overlying the untreated soil and slurry-only 233 treatments in the agitator tests. The reductions in mass of DRP in the overlying water for 234 each amendment at 3 rates are tabulated in Table 1. Effervescence did not occur at the 235 lower application rates. However, slurry volume increased by approximately 50% when 236 alum was applied at 2.44 Al:TP. Lefcourt and Meisinger (2001) reported similar results, 237 recommending that alum be added slowly. The addition of AlCl₃ increased the difficulty 238 of handling the slurry compared to the alum treatment, due to formation of foam on the 239 surface of the slurry. This phenomenon was also noted by Smith et al. (2001b). FeCl₂ was 240 very effective and these results were in agreement with Moore and Miller (1994). 241 However, it was not as efficient as alum or AlCl₃ treatments. Lime was less effective 242 than Fe and Al-based compounds. 243 244 In this study, Al-WTR-1 reduced soluble P in water overlying the soil by 31%, 77% and 245

246 matter of dairy cattle slurry, respectively (0.28 kg/kg versus 1.4 kg/kg rates, p=0.003, no

74% when applied at rates of 0.28, 0.69, and 1.4 kg of dry matter of sludge/kg of dry

- 247 significant difference between the 0.69 kg/kg and 1.4 kg/kg rates). Homogenised Al-
- 248 WTR-2 reduced soluble P in water overlying the soil by 0%, 71% and 67%, when applied

on an equivalent basis. While not statistically significant, the irregularity between the
0.69 and 1.4 kg/kg treatment rates was found to be consistent across sieved and sludge
treatments. McGrath et al. (2010) observed a 91% reduction in soluble P at when AlWTR was applied at 0.2 kg/kg. The WTR used by McGrath et al. (2010) had Fe of 3.1%
and Al of 7.6% - higher than the composition of WTR used in this study.

Flyash and FGD reduced soluble P in cattle slurry by 72% (versus control, p<0.0001) and
89% (versus control, p<0.0001), respectively, when applied at 4.2 kg/kg and 5.6 kg/kg,
respectively. These rates of addition are higher than those used in previous studies (Dao,
1999; Dou et al., 2003).

259

Statistical analysis found that there was evidence of a three-way interaction between
amendment, rate of application and time, but that the interaction was on a smaller scale
than the main effects of amendment and time. Initially, the pH of the slurry was 7.3 ±0.5
(p<0.0001); the acidifying additives increase acidity of the slurry. Meisinger et al. (2001)
found that pH would need to be lower than 5 to significantly reduce gaseous emissions.
Lime addition increased the pH to a maximum value of 8.8 (p<0.0001). Application of
Al-WTR, flyash and FGD did not significantly alter slurry pH initially.

At t=24hr, slurry pH increased to 7.8 (p<0.0001), while the effects of the acidifying

additives reduced. Lime-treated slurry pH increased to 10.3 (p<0.0001). The pH of Al-

270 WTR, flyash and FGD treatments also increased. Flyash had a pH of 9.3 (p<0.0001) at

the optimum application rate. The pH of the overlying water was not measured.

273	McGrath et al. (2010) demonstrated that Ca and Mg-rich PSMs were most effective at P
274	precipitation when manures or solution have sufficient buffering capacity to maintain a
275	pH of between 6.5 and 7.5, and that Fe and Al-based compounds were more effective at
276	low pH. This was consistent with the study findings.
277	
278	Cost analysis of all treatments
279	
280	The cost of each treatment per cubic metre of slurry and for a 100-livestock unit farm is
281	shown in Table 1. The cost of chemical amendment was calculated based on the
282	estimated cost of chemical, chemical delivery, addition of chemical to slurry, increases in
283	slurry agitation, and slurry spreading costs as a result of increased volume of slurry as a
284	consequence of adding amendments.
285	
286	Figure 2 shows the total cost of chemical amendment of dairy cattle slurry, including
287	spreading and agitation costs, plotted against the potential reduction in DRP lost to
288	overlying water and the percentage reduction in DRP release to overlying water.
289	
290	Conclusions
291	
292	The findings of this study are:
293	(1) Alum is the most cost-effective chemical amendment capable of greater than 90%
294	reduction in soluble P in overlying water at an additional cost of $\text{\&}4.40/\text{m}^3$ slurry;

- 295 (2) $FeCl_2$ is the second most cost-effective chemical amendment with an 88% reduction
- in soluble P in overlying water at an additional cost of $(3.60/m^3 \text{ slurry})$;
- 297 (3) AlCl₃ (\pounds .40/m³) and lime (\pounds .90/m³ slurry additional cost) applied at rates used in
- this study, are expensive compared to alum and FeCl₂ and alum;
- 299 (4) Ca-based compounds (Ca(OH)₂ and FGD) are much less effective at removing P than
- 300 Fe and Ca compounds. This due to the inability of slurry to buffer the pH of slurry
- 301 sufficiently to optimise Ca-P bond formation;
- 302 (5) Flyash results in a 72% reduction in DRP in the overlying water (\pounds .90/m³ slurry
- 303 additional cost).
- 304 (6) Alum-based drinking water treatment residuals reduce the loss of soluble P from dairy
- 305 cattle slurry by 71% at \pounds .20/m³ slurry additional cost, provided that the farmer has
- 306 additional storage facilities. In addition, Al and Fe-rich WTRs may be more effective at
- 307 lower application rates.
- 308 (7) Further work is necessary to prove that there is no risk to water quality associated309 with these treatments.
- 310
- 311

312 Acknowledgments

313

314 The first author gratefully acknowledges the award of a Walsh Fellowship by Teagasc to

- 315 support this study. The authors are also very grateful for assistance provided by Teagasc
- and NUI Galway technicians, with special mention to Con Dowdall and Peter Fathy.

- 317 They also wish to thank Patricia McGrath, who provided the soil samples, and to Cecile
- 318 Labonne, who was a great help during the study.

342	American Public Health	Association (APHA).	1995. Standard methods fo	r the
-----	------------------------	---------------------	---------------------------	-------

- 343 examination of water and wastewater. APHA, Washington.
- 344
- 345 Bourke, D., Hochstrasser, T., Nolan, S. & Schulte, R. 2007. Historical grassland turboveg
- database project: 2067 relevés recorded by Dr. Austin O'Sullivan 1962 1982. Final

347 report. Teagasc, Johnstown Castle, Co. Wexford, Ireland. Available at:

348 <u>www.teagasc.ie/research/reports/environment/5653/eopr-5653.pdf</u>.; accessed 6/1/10.

349

British Standards Institution. 1990a. British standard methods of test for soils for civil
engineering purposes. Determination of particle size distribution. BS 1377:1990:2. BSI,
London.

353

British Standards Institution. 1990b. Determination by mass-loss on ignition. British standard methods of test for soils for civil engineering purposes. Chemical and electrochemical tests. BS 1377:1990:3. BSI, London.

357

Byrne, E. 1979. Chemical analysis of agricultural materials – methods used at Johnstown
Castle Research Centre, Wexford. Published by An Foras Taluntais.

360

361 Cottenie, A. and L. Kiekens. 1984. Report of results of the inter-laboratory comparison:

362 Determination of the mobility of heavy metals in soils. *In* P. L'Hermite and H.D. Ott

363 (ed.) Processing and use of sewage sludge. Reidel, Dordrecht, The Netherlands.

365	Dao, T.H. 1999. Co-amendments to modify phosphorus extractability and
366	nitrogen/phosphorus ratio in feedlot manure and composted manure. Journal of
367	Environmental Quality 28, 1114-1121.
368	
369	Dayton, E.A. and Basta, N.T. Characterisation of drinking water treatment residuals for
370	use as a soil substitute. Water Environment Research, Vol. 73, No. 1 52-57. Available at:
371	http://www.jstor.org/stable/25045460; accessed 22/1/10.
372	
373	Dou, Z., Zhang, G.Y., Stout, W.L., Toth, J.D. & Ferguson, J.D. 2003. Efficacy of alum
374	and coal combustion by-products in stabilizing manure phosphorus. Journal of
375	Environmental Quality 32 , 1490-1497.
376	
377	EEC. 1991. Council Directive concerning the protection of waters against pollution
378	caused by nitrates from agricultural sources. Council of the European Communities,
379	91/676/EEC.
380	
381	Official Journal of the European Communities, 2000. Directive 2000/60/EC of the
382	European Parliament and of the council of 23 October 2000 establishing a framework for
383	Community action in the field of water policy. 72p.
384	
385	Fay, D. Kramers, G. Zhang, C. "Soil Geochemical Atlas of Ireland". Associated datasets
386	and digitial information objects connected to this resource are available at: Secure

- 387 Archive For Environmental Research Data (SAFER) managed by Environmental
- 388 Protection Agency Ireland. Available at: <u>http://erc.epa.ie/safer/resource?id=4856ff8c-</u>
- 389 <u>4b2b-102c-b381-901ddd016b14</u>; accessed 12/1/10.
- 390
- 391 Fenton, O., M.G. Healy, and M. Rodgers. 2009. Use of ochre from an abandoned acid
- 392 mine in the SE of Ireland for phosphorus sequestration from dairy dirty water. Journal of
- 393 Environmental Quality **38**, 1120 1125.
- 394
- Hao, X., Godlinski, F. & Chang, C. 2008. Distribution of phosphorus forms in soil
- 396 following long-term continuous and discontinuous cattle manure applications. Soil
- 397 Science Society of America Journal 7, 90-97.
- 398
- 399 Kleinman, P.J.A., Sullivan, D., Wolf, A., Brandt, R., Dou, Z., Elliott, H., Kovar, J.,
- 400 Leytem, A., Maguire, R., Moore, P., Saporito, L., Sharpley, A.N., Shober, A., Sims, T.,
- 401 Toth, J., Toor, G., Zhang, H. & Zhang, T. 2007. Selection of a water extractable
- 402 phosphorus test for manures and biosolids as an indicator of runoff loss potential. Journal
- 403 of Environmental Quality **36**, 1357-1367.
- 404
- 405 Lefcourt, A.M. & Meisinger, J.J. 2001. Effect of adding alum or zeolite to dairy slurry on
- 406 ammonia volatilisation and chemical composition. Journal of Dairy Science 84, 1814-
- 407 1821.
- 408

409	McFarland, A.M.S, Hauck, L.M. & Kruzic, A.P. 2003. Phosphorus reductions in runoff
410	and soils from land-applied dairy effluent using chemical amendments. Texas Journal of
411	Agriculture and Natural Research 16, 47-59.
412	
413	McGrath, J.M., C.J. Penn, R.B. Bryant, and M.A. Callahan. 2010. Use of industrial
414	byproducts to sorb and retain phosphorus in animal manure. In progress.
415	
416	Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of the Mehlich 2
417	extractant. Communications in Soil Science and Plant Analysis 15, 1409-1416.
418	
419	Meisinger, J.J., Lefcourt, A.M., Van Kessel, J.A. &Wilkerson, V. 2001. Managing
420	ammonia emissions from dairy cows by amending slurry with alum or zeolite or by diet
421	modification. Proceedings of the 2 nd International Nitrogen Conference on Science and
422	Policy. The ScientificWorld 1(S2), 860-865.
423	
424	Moore, P.A. Jr. & Miller, D.M. 1994. Decreasing phosphorus solubility in poultry litter
425	with aluminium, calcium and iron amendments. Journal of Environmental Quality 23,
426	325-330.
427	
428	Moore, P.A. Jr., Jaynes, W.F. & Miller, D.M. 1998. Effect of pH on the solubility of
429	phosphate minerals, in: Blake, J.P., Patterson, P.H. (Eds.) Proc. 1998 Natl. Poultry Waste
430	Manage. Symp., Springdale, AR.19-21 Oct. 1998. Auburn Univ. Print. Serv., Auburn,
431	AL, pp. 328-333.

433	Moore, P.A. Jr. & Edwards, D.R. 2005. Long-term effects of poultry litter, alum-treated
434	litter and ammonium nitrate on aluminium availability in soils. Journal of Environmental
435	Quality 34, 2104-2111.
436	
437	Mulqueen, J., Rodgers, M. & Scally, P. 2004. Phosphorus transfer from soil to surface
438	waters. Agricultural Water Management 68, 91-105.
439	
440	Novak, J.M. & Watts, D.W. 2005. An alum-based water treatment residual can reduce
441	extractable phosphorus concentrations in three phosphorus-enriched coastal plain soils.
442	Journal of Environmental Quality 34, 1820-1827.
443	
444	Pratt, P.F. & Blair, F.L. 1963. Buffer method for estimating lime and sulphur applications
445	for pH control of soils. Soil Science 93, 329.
446	
447	SAS (2004). SAS/STAT [®] User's Guide. Cary, NC: SAS Institute Inc.
448	
449	S.I.101.2009. European Communities (Good Agricultural Practice for Protection of
450	Waters) Regulations 2009. Available at:
451	http://www.environ.ie/en/Legislation/Environment/Water/FileDownLoad,19875,en.pdf;
452	accessed 12/1/10.
453	

454	Smith, K.A., Jackson, D.R. & Withers, P.J.A. 2001a. Nutrient losses by surface run-off
455	following the application of organic manures to arable land. 2. Phosphorus.
456	Environmental Pollution 112, 53-60.
457	
458	Smith, D.R., Moore, P.A., Griffiths, C.L., Daniel, T.C., Edwards, D.R. & Boothe, D.L.
459	2001b. Effects of alum and aluminium chloride on phosphorus runoff from swine
460	manure. Journal of Environmental Quality 30 , 992-998.
461	
462	Stout, W.L., Sharpley, A.N. & Pionke, H.B. 1998. Reducing soil phosphorus solubility
463	with coal combustion by-products. Journal of Environmental Quality 27, 111-118.
464	
465 466	Teagasc 2008, Management data for Farm Planning 2008, Teagasc, Oak Park, Carlow.
467	Timoney, F. 2009. Codes of Good Practice for the use of biosolids in agriculture:
468	Guidelines for farmers. Department of the Environment and Local Government and
469	Agriculture: Available at
470	http://www.environ.ie/en/Publications/Environment/Water/FileDownLoad,17228,en.pdf;
471	accessed 12/1/10.
472	
473	
474	
475	
476	
477	

478 **Captions for Tables**

479

Table 1. Table showing cost of supply, delivery and addition of amendments, and increase in agitation costs and spreading costs due to increases in volume^a and WEP of slurry 24 hr after application.

483

Table 2. Characterisation of PSMs used in the agitator test (mean ± standard deviation) tests carried out in triplicate, the maximum load of metals per hectare per treatment, maximum permissible annual average rates of addition of certain heavy metals to soils over a 10-yr period, background levels of these metals in mineral and organic soils, and limits on heavy metal concentrations in water drinking water extraction.

Chemical ^b	Rate of addition	Cost ^c	Rate	Spreading ^d	Agitation ^e	Cost water ^f	Total	100 unit farm	P reduction	Metals ⁱ	WEP ^j
		€/ tonne	kg/m ³	€/m ³	€/m ³	€/m³	€/m³	€/farm	% P	kg/ha	mg/kg
None				1.6	0.50	0	2.1	1,240			2.64 ± 0.15
Alum	0.98:1 Al: P	150	23	1.6	0.51	0	5.6	3,310	83	49	0.51 ± 0.01
	1.22:1 Al: P		29	1.6	0.51	0	6.5	3,840	94	61	$0.27{\pm}0.07$
	2.44:1 Al: P		58	1.6	0.53	0	10.9	6,470	99	122	0.03 ± 0.0
$AlCl_3(PAC)$	0.98:1 Al: P	280	18	1.6	0.51	0	7.2	4,300	87	49	2.08 ± 0.06
	1.22:1 Al: P		23	1.6	0.51	0	8.5	5,070	92	61	1.43 ± 0.02
	2.44:1 Al: P		46	1.6	0.52	0	15	8,930	99	122	0.16 ± 0.02
FeCl ₂ (FeCl ₃)	2:1 Fe: P	250	14	1.6	0.51	0	5.7	3,370	88	100	2.43 ± 0.27
	5:1 Fe: P		36	1.6	0.52	0	11.1	6,600	90	250	0.73 ± 0.06
	10:1 Fe: P		72	1.7	0.54	0	20.2	11,100	99	500	0.4 ± 0.02
Ca(OH) ₂	1:1 Ca: P	312	2	1.6	0.50	0	2.6	1,570	0	50	1.7 ± 0.06
	5:1 Ca: P		9	1.6	0.50	0	5	2,990	74	250	0.2 ± 0.02
	10:1 Ca: P		19	1.6	0.51	0	8	4,760	81	500	0.05 ± 0.0
PSMs											
Al-WTR-1	0.28 kg/kg	0	20	1.6	0.51	0	2.1	1,240	31		$2.49{\pm}0.06$
(<2mm) ^g	0.69 kg/kg		50	1.9	0.61	0.3	2.8	1,670	77		1.73 ± 0.02
	1.4 kg/kg		100	2.6	0.83	1.1	4.5	2,680	74		0.93 ± 0.02
Al-WTR-2	0.28 kg/kg	5	63	1.6	0.53	0.3	2.5	1,480	0		1.13 ± 0.05
(sludge) ^h	0.69 kg/kg		156	1.9	0.61	0.8	3.4	2,010	71		0.28 ± 0.01
	1.4 kg/kg		313	2.5	0.81	1.6	5.5	3,270	67		0.07 ± 0.0
Flyash	2.1 kg/kg	14	150	3.2	1.04	1.8	8.2	4,850	43		0.92 ± 0.14
	4.2 kg/kg		300	4.9	1.58	3.6	14.3	8,480	72		$0.21{\pm}0.08$
	5.6 kg/kg		400	5.8	1.89	4.6	17.9	10,600	91		0.22 ± 0.04
FDG ^g	1.33 kg/kg	14	150	2.5	0.81	0.9	6.3	3,740	72		0.09 ± 0.0
	2.65 kg/kg		300	3.6	1.17	2	11	6,520	89		0.05 ± 0.0
	3.5 kg/kg		400	4.3	1.37	2.6	13.8	8,210	81		0.04 ± 0.0

Table 1. Table showing cost of supply, delivery and addition of amendments, and increase in agitation costs and spreading costs due to increases in volume^a and WEP of slurry at 24hr.

^a These calculations are based a dairy farm with 100 cows, or equivalent stock, with a 18-wk winter. Sample slurry properties are based on based average values from this study (TP = 811 mg/L, density of 1.01 g/cm^3 and dry matter content of 7.2%).

^b Ca(OH)₂, AlCl₃ (PAC) and FeCl₂ (FeCl₃) were laboratory chemicals; the most similar product on the market (in brackets) was chosen for cost estimates.

^c Total cost of material, delivery of material and addition of material to slurry in slurry storage tank per cubic meter of amendment used.

^d Slurry spreading costs estimated based on data from Teagasc (S. Lawlor *pers comm*, 2010) and increase in volume of slurry due to amendment.

^e Slurry agitating costs estimated based on data from Teagasc (2008) with and increase in volume of slurry due to amendment.

^f For ease of handling water DM must be approximately 10%. Some amendments resulted in DM >10%. Water would need to be added to the slurry to enable spreading.

^g Al-WTR-1 <2 mm is alum-based water treatment residual which has been dried and crushed to pass the 2mm sieve ^h Al-WTR-2 sludge is the homogenised alum-based water treatment residual in its natural state after water treatment and separation.

ⁱTotal metal applied for each of the chemical amendments was calculated based on a slurry application rate of 50 m³/ha for each treatment.

^j WEP of slurry 24 hr after start of agitator test.

Table 2. Characterisation of PSMs used in the agitator test (mean \pm standard deviation) tests carried out in triplicate, the maximum load of metals per hectare per treatment, maximum permissible annual average rates of addition of certain heavy metals to soils over a 10 year period and background levels of these metals in mineral and organic soils and limits on heavy metal concentrations in water drinking water extraction.

Parameter		By-product characterisation				Metal application rate ^a				Application	Background ^d		Water
Unit		Al-WTR-1 (<2mm)	Al-WTR-2 (Sludge)	Flyash	FGD ^b	Al-WTR-1	Al-WTR-2	Flyash	FGD	limits ^c	Mineral soil	Organic soil	limits ^e
DM	24	100	~~~~	00.0.0.01	07 0	kg/ha	kg/ha	kg/ha	kg/ha	kg/ha	kg/ha	kg/ha	mg/L
DM	%	100	32±2	99.9±0.01	$3/\pm 3$								
pH		7.9 ± 0.1	6.9 ± 0.2	11.2 ± 0.04	8.6 ± 0.01								
WEP	mg/kg	<0.01		<0.01	< 0.01								
Al	%	11.1 ± 0.05	5.33 ± 1.2	5.66 ± 0.2	0.09 ± 0.0	280	420	848	6.75		97,000	70,000	
As	mg/kg	6.2 ± 1.1	< 0.01	13.3 ± 0.6	< 0.01	0.02	0.02	0.2	0		31.5	26.7	0.05
Ca	%	1.3 ± 0.08	0.11 ± 0.0	4.85 ± 0.2	20 ± 0.3	32.4	8.6	730	1520		36,300	39,900	
Cd	mg/kg	0.16 ± 0.03	< 0.01	0.58 ± 0.03	0.17 ± 0.02	0.0004	0	0.009	0.0013	0.05	2.31	2.23	0.005
Co	mg/kg	0.49 ± 0.28	< 0.01	33.3 ± 1.2	0.3 ± 0.14	0.0012	0	0.5	0.0025		21.7	16.7	
Cr	mg/kg	3.8 ± 0.21	0.3 ± 0.02	88.3 ± 1.5	3 ± 0.1	0.01	0.0024	1.33	0.0225	3.5	126	74.9	
Cu	mg/kg	31.7 ± 1.5	0.63±0.03	32.7 ± 1.5	37 ± 13	0.08	0.005	0.49	0.28	7.5	64.5	57.5	0.05
Fe	%	0.24 ± 0.01	0.01±0.0	2.15 ± 0.1	0.06 ± 0.01	6.1	0.8	320	4.5		52,300	49,800	0.3
Κ	%	0.03 ± 0.01	< 0.01	0.1	0.03	0.67	0	15	2.25		26,600	18,600	
Mg	mg/kg	165 ± 33	3.17 ± 1.7	12200 ± 610	0.2950 ± 58	0.41	0.025	183	22.2		12,200	6,160	
Mn	mg/kg	79±1	6.87±0.1	347 ± 160	31 ± 0.6	0.2	0.05	5.2	0.325		2,780	2,050	0.05*
Mo	mg/kg	0.47 ± 0.2	< 0.01	7.67 ± 0.5	0.73 ± 0.3	0.001	0	0.12	0.006		4.6	4.73	
Na	mg/kg	611 ± 180	65 ± 14	1370 ± 610	660 ± 93	1.5	0.51	20.5	4.95		15,800	10,200	
Ni	mg/kg	4.8 ± 0.06	0.6 ± 0.2	44 ± 1	11 ± 0.6	0.012	0.005	0.67	0.09	3	72.7	49.6	
TP	mg/kg	234 ± 5.3	18.7 ± 1.6	5460±630	65 ± 21	0.6	0.15	81.9	0.49		2.800	2.660	0.4*
Ph	mg/kg	12+08	< 0.01	30+1.7	0.74 ± 0.4	0.003	0	0.45	0.006	4	85.4	81.3	0.05
V	mg/kg	3 ± 0.2	0.2+0.01	155+3.6	49+2	0.008	0.0016	2 32	0.37	•	152	105	0.00
Zn	mg/kg	17 ± 0.2	0.8 ± 0.1	75 ± 31	9.4 ±2	0.043	0.006	1.13	0.07	7.5	210	139	0.5*

^aThe maximum load of each metal per hectare for each treatment is tabulated based on a slurry application rate of 50m³/ha and the optimum rate for each amendment.

^b FGD is flue gas desulphurisation product.

^CGuideline limits in the Code of Good Practise for the use of biosolids in agriculture (Timoney, 2009) for the max permissible annual average rates of addition over a 10 year period.

^dTotal metal and nutrient concentrations (95% percentile) of soil (Soil Geochemical Atlas of Ireland (Fay et al., 2010)) in upper 100mm of soil (bulk density 1.4 g/cm³).

^eCharacteristics of surface water intended for the abstraction of drinking water (74/440/EEC), guidelines (*) where no mandatory limit.

Captions for figures.

(

Figure 1. Phosphorus released per unit surface area and DRP concentration in overlying water plotted against square root of time for undisturbed intact grassed sod only treatment

1) (And grassed soil amended with slurry at

Figure 2. Total cost of chemical amendment of dairy cattle slurry including spreading and agitation costs plotted against the reduction in DRP lost to overlying water and the percentage reduction in DRP release to overlying water.

Figure 1.

Figure 2.

Note:

The amendments plotted (each at three rates) are \blacklozenge aluminium sulphate, \blacklozenge aluminium chloride, \blacktriangle ferric chloride, \blacksquare burnt lime, \circ Al-WTR, + flyash and \triangle FGD.