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ABSTRACT
A quantitative risk ranking model was developed for human exposure
to emerging contaminants (EC) following treated municipal sewage
sludge (“biosolids”) application to Irish agricultural land. The model
encompasses the predicted environmental concentration (PEC) in soil,
surface runoff, groundwater, and subsequent drinking water ingestion
by humans. Human exposure and subsequent risk was estimated for
16 organic contaminants using a Monte Carlo simulation approach.
Nonylphenols ranked the highest across three environmental
compartments: concentration in soil (PECsoil), runoff (PECrunoff), and
groundwater (PECgroundwater), which had mean values of 5.69 mg/kg,
1.15 £ 10¡2 mg/l, and 2.22 £ 10¡1 mg/l, respectively. Human health
risk was estimated using the LC50 (chemical intake toxicity ratio, (RR))
as a toxicity endpoint combined with PECrunoff and PECgroundwater. NP
ranked highest for LC50 combined with PECrunoff and PECgroundwater
(mean RR values 1.10 £ 10¡4 and 2.40 £ 10¡3, respectively). The
model highlighted triclocarban and triclosan as ECs requiring further
investigation. A sensitivity analysis revealed that soil sorption
coefficient and soil organic carbon were the most important
parameters that affected model variance (correlation coefficient –0.89
and –0.30, respectively), highlighting the significance of contaminant
and soil properties in influencing risk assessments. This model can help
to prioritize emerging contaminants of concern requiring vigilance in
environmental compartments.

KEYWORDS
water; contaminants;
biosolids; risk; soil; human
consumption

Introduction

More than 10 million tons of sewage sludge was produced in the European Union (EU) in
2010 (Eurostat 2014). After appropriate treatment, the sludge (referred to as “biosolids”)
may be applied, as an agricultural fertilizer, to land. There are considerable public acceptance
issues surrounding the reuse of treated sludge as a fertilizer. The main fear is that the pres-
ence of organic contaminants in biosolids may accumulate in the food chain, or cause the
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contamination of soil and water (Cornu et al. 2001). Recent field biosolid studies have shown
that organic (Topp et al. 2008) and inorganic contaminants (Gottschall et al. 2012) can be
lost along surface runoff and leaching pathways, where land application is followed by epi-
sodic rainfall events. Emerging contaminants can be defined as any synthetic or naturally
occurring chemical or microorganism that is not commonly monitored in the environment
and cause known or suspected adverse ecological or human health effects (Careghini et al.
2014). The application of municipal biosolids on agricultural land could potentially be a
widespread source of EC loss to surface and groundwater bodies (Smith 2009).

The quantity of biosolids applied to agricultural land within the European Union has
increased in recent times. The impetus for this increase is as a result of four directives. The
Sewage Sludge Directive 86/278/EEC (CEC 1986), The Urban Waste Water Treatment
Directive (CEC 1991), which was amended by 98/15/EC in 2005, The Landfill Directive
1999/31/EC (CEC 1999), and The Waste Framework Directive 2008/98/EC (CEU 2012)
encourage the reuse of biosolids whenever appropriate with an emphasis on protection of
human health, water, soil, and air.

Many organic contaminants are resistant to removal during the sewage treatment process
(Clarke and Cummins 2015), may persist as part of the effluent/sludge, or may be released
directly or indirectly into the aquatic environment following land application of biosolids
(Murray et al. 2010). Previous reports have indicated that land application of biosolids can
be an important route through which contaminants enter the environment. McClellan and
Halden (2010) reported the mean concentrations of 72 various pharmaceuticals and per-
sonal care products (PPCPs) detected in 110 archived biosolid samples that were collected
by the USEPA in 2001. The report showed that triclosan and triclocarban were the most
abundant contaminants with mean concentrations 12.6 § 3.8 and 36 § 8 mg/kg. Lapen
et al. (2008) reported that following land application of biosolids (common rate of applica-
tion 93,500 L ha¡1), PPCPs moved rapidly (within minutes) via soil macropores to tile
drains (PPCPs concentration 101 to 103 ng/l). The authors noted that liquid municipal bio-
solids were spread and were applied in the wet season. Following from the Lapen study,
Edwards et al. (2009) studied the fate of PPCPs following the application of dewatered bio-
solids on the same agricultural land one year after the Lapen study. The results show that
concentrations of PPCPs were generally lower in the dewatered biosolids; this shows that the
characteristics of the biosolids may influence the transport potential following land applica-
tion. Similarly Xia et al. (2010) evaluated the levels of four organic contaminants in soils
from field plots receiving annual applications of biosolids for 33 years. All four contaminants
were detected in most of the biosolid concentrations ranging from hundreds of mg/kg to over
1000 mg/kg (dry weight basis). As the biosolid application rate increased, contaminant con-
centration increased. Three of the contaminants (TCC, TCS, and 4-NP) showed a rapid
transformation and degraded in the soil under natural field conditions; however the fourth
contaminant (polybrominated diphenyl ether [PBDE]) was slow to degrade and may result
in accumulation.

Detection of contaminants in surface waters following land application of biosolids have
been widely reported (Miao et al. 2005; Smith 2009; Gottschall et al. 2013). Sabourin et al.
(2009) reported maximum concentrations of contaminants in runoff ranging from below
detection limits to 109.7 ng/l following application of dewatered biosolids to agricultural
land. Chari and Halden (2012) reported the detection of the hormones 17b estradiol and
estrone in surface waters >30 days after land application of biosolids. Toxicity studies have
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shown adverse effects of steroidal hormones, even at low concentrations (»100 to >1000
ng¡1), on fish and aquatic invertebrates (Gottschall et al. 2013). Mompelat et al. (2009) also
demonstrated that in Europe there are water quality and safety issues regarding the amount
of pharmaceuticals detected in surface and drinking waters.

Due to their confirmed presence in biosolids-amended soils, the antimicrobials triclosan
and triclocarban may have the potential to bioaccumulate in soil-dwelling organisms and thus
exert toxic effects on higher organisms through trophic transfer (Higgins et al. 2011). Recent
toxicological reports have shown that triclocarban has the potential to disrupt excitation-con-
traction coupling in skeletal and cardiac muscles in humans (Gautam et al. 2014). Triclocar-
ban has been linked to endocrine disruption by amplifying androgen receptor-mediated
activity in rats, and has also caused methemoglobinemia in humans exposed to boiled water
containing 1.1% of triclocarban, which formed a primary aromatic amine (Palenske 2009).
Recent reports have revealed that triclosan is capable of interfering with various hormones as
a weak endocrine disruptor in multiple species, as well as impairing muscle contraction (Yueh
et al. 2014). The results of these studies raise toxicological and public concerns at the lack of
knowledge of the potential health effects associated with direct water ingestion. Hogenboom
et al. (2009) reported concerns that such contamination can become an increasing problem
for drinking water supplies, especially since the European Reach Legislation (Commission
Regulation (EU) No. 1272/2013) may drive producers to develop newly designed, less lipo-
philic/bioaccumulative chemicals that may lead to highermobility of the chemicals in aqueous
media. Furthermore, the demands on drinking water treatment companies to remove hydro-
philic compounds that are inherently more difficult to remove by traditional drinking water
treatment techniques will be a challenge (Schriks et al. 2010). Most of the substances detected
lack toxicity data to derive safe levels and have not yet been regulated (Mons et al. 2013). At
present, the World Health Organisation (WHO; 2011) has derived approximately 125 statu-
tory guideline values for contaminants in drinking water.

In addition to pharmaceuticals, emerging POPs such as PFOS and PFOA have frequently
been detected in drinking water (Loos et al. 2007; Xiao et al. 2013). PFOS and PFOA are
members of a large family of perfluorinated chemicals (PFCs), and their use has included
performance chemicals such as surfactant in firefighting foam and emulsifiers in floor polish
(Rumsby et al. 2009). Most of the environmental release is to water (98%) and the remainder
is to air. They are immobile in soil and are non-biodegradable in sewage sludge (Rumsby
et al. 2009). PFOS and PFOA detected in drinking water have become a significant concern
to human health. Levels of PFOA and PFOS have been detected in drinking water at 2.4 and
8.1 ng/l, respectively (Loos et al. 2007). It has also been suggested that ongoing exposure to
PFOA in drinking water at levels of 10 ng/l or 40 ng/l can increase serum PFOA levels by
approximately 25% and 100%, respectively, from the general population background serum
level of »4 ng/ml (Olsen et al. 2003). The association of blood/serum PFOS and/or PFOA
levels with hyperuricemia and with children attention deficit/hyperactivity disorder and low-
ered immune response to vaccinations have been reported (Olsen et al. 2003; Post et al. 2009;
Steenland et al. 2010). As yet, there are no drinking water quality standards in the European
Union; however, following incidents of pollution, some member states have issued guidance
based on human health effects for PFOS and PFOA if found in drinking water. For example,
the drinking water inspectorate in England and Wales has implemented a four tier system
for drinking water companies to adopt for the monitoring and management of PFOS and
PFOA in drinking water supplies. The inspectorate provides guidance on the levels of PFOS
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and PFOA that water companies should act upon to fulfil their statutory obligations to
ensure the safety of drinking water. The drinking water commission in Germany also have
issued guidance on the maximum values for PFOA and PFOS combined concentrations in
drinking water with values ranging from 0.1 mg L¡1–5 mg L¡1 (Rumsby et al. 2009).

The widespread use of the surfactant NP and its short ethoxy chain precursors, NP1EO and
NP2EO, has led to the detection of these contaminants in many environmental matrices such
as water, sediment, air, and soil (Mao et al. 2012). Due to their physical–chemical characteris-
tics such as high hydrophobicity and low solubility, NP, NP1EO, and NP2EO accumulates in
the environmental compartments that are considered high in organic content, such as sewage
sludge (Soares et al. 2008). Vikelsøe et al. (2002) reported significant concentrations of NP in
soil samples (1450 mg/kg dw) exposed to high amounts of sludge applied (17 t dw/ha/yr) over
a 25-year period. The soil was sampled twice with a 2-year interval and showed that concen-
trations of NP increased to 2430 mg/kg dw. This was compared to a low and normal sludge
application rate showing NP concentrations of 0.04 and 0.01mg/kg dw, respectively. The con-
centration of NP in surface runoff was 34mg/kg dw following high sludge application.

NP, NP1EO, and NP2EO have been reported to exert a number of estrogenic responses
on aquatic organisms, and have therefore been classified as endocrine disruptors by the
WHO (WHO 2004; Gatidou et al. 2007). Exposure to the endocrine disruptor NP and its
short ethoxy chain precursors, NP1EO and NP2EO, have been extensively studied in fresh-
water organisms, and can result in hermaphroditism, developmental abnormalities, reduc-
tion in larval survival and changes in the sex ratio in females which were found in the Pacific
oyster, Crassostrea gigas, at concentrations as low as 1-100 mg/l (Vazquez-Duhalt et al.
2005). Low level exposure of NP to freshwater organisms can cause severe reproductive dis-
orders (<0.1mg/l) and even death (LC50 D 0.1–5 mg/l; Roberts et al. 2006). However, NP
and its ethoxylates were designated as priority hazardous substances (PHS) in the Waste
Framework Directive 2000/60/EC (EC 2000) and most of their uses are currently regulated
(Soares et al. 2008).

Although concentrations of NP have been detected at concentrations up to 55.3 mg/l in
drinking water, adverse consequences from human exposure to NP, NP1EO, and NP2EO
can take a variety of forms, including immuno-regulatory properties that can be crucial for
normal foetal development (Vazquez-Duhalt et al. 2005). NP may be capable of inducing
breast tumour cell proliferation and has the ability to mimic the natural hormone
17bestradiol by competing for the binding site for the receptor for the natural oestrogen
(Soares et al. 2008). In 2008, the (WFD 2015) placed nonylphenols on a list of priority haz-
ardous substances for which environmental quality standards were set. The threshold values
of 0.3 mg/l in drinking water for annual average and the maximum allowable concentrations
(2 mg/l) for surface waters were set (Water Framework Directive 2015).

Although certain POPs emissions are restricted under the Stockholm Convention (UN/
EP 2001) because of persistent, bioaccumulative, and toxic properties in humans and wild-
life, many researchers still report “legacy” POPs in environmental media around the world.
Zennegg et al. (2013) recently reported temporal trends of POPs in biosolids. In their study,
selected POPs were measured in biosolids between 1993 and 2012 from eight different
wastewater treatment plants in Switzerland. There was a decreasing trend in biosolids of
dioxin-like POPs (PCBs and PCDD/Fs) with a half-life of 9 to 12 years. However, there was
no reduction in PBDEs, PFOAs and PFOSs. This study is indicative of the restrictions and
exclusion of POPs (e.g., PCBs, PCDD/Fs) in the last two decades and their reduction in the
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environment, however, recently restricted or excluded POPs (e.g., PBDEs, PFOAs, and
PFOSs) have yet to show a reducing trend.

The primary objective of this study is to develop a quantitative human health risk ranking
model for “legacy” (e.g., dioxin-like compounds) and EC in biosolids that are reused in Irish
agriculture. All contaminants will be ranked to identify those that may pose the greatest risk
to surface water, groundwater, drinking water and, ultimately, human health.

Methods and materials

Risk assessment

Risk assessment is a process of identifying potential adverse consequences along with their
severity and likelihood (Jenkin et al. 2007). A probabilistic model adopted from Trevisan
et al. (2009) was constructed to estimate human exposure to organic contaminants that are
contained within biosolids destined for grassland application. The model includes four
major compartments (Figure 1): concentration in top soil (PECsoil), surface runoff (PECrun-

off), groundwater (PECgroundwater), and the level of chemical intake or human exposure (HE).
The chemical intake toxicity ratio (RR) (ratio of the measure of the effects (LC50) to the esti-
mated exposure) was used to model human risk. The probabilistic approach provides a com-
plete scenario of potential organic contaminant exposures, compared to use of a single set of
discrete inputs.

Figure 1. Flow diagram of inputs and outputs for the quantitative risk ranking process for organic contam-
inants. Note: Key for parameters can be found in Table 2.
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Contaminants of concern

In order to identify hazardous contaminants it is important to know the fate and behavior of
contaminants in the environment (e.g., persistence, bioaccumulative, and toxicity). There
are currently knowledge gaps regarding the toxicity and environmental fate for a consider-
able number of contaminants on the market. The contaminants analyzed in this study com-
prise a group of organic contaminants belonging to various categories and chosen based on
persistence, bioaccumulation, and toxicity (PBT). The selected contaminants include dioxin-
like compounds (polychlorinated biphenyls [PCBS], polychlorinated dibenzo-p-dioxin fur-
rans [PCDD/Fs] and flame retardant [PBDEs], PPCPs [carbamazepine, triclosan, triclocar-
ban, propranolol, and metoprolol], perfluorooctane sulfonate [PFOS] and
perfluorooctanoate [PFOA] substances, natural hormones [estrone and estradiol], surfac-
tants [nonylphenol (NP], its short ethoxy chain precursors nonylphenol mono-(NP1EO),
and di-ethoxylate (NP2EO)), and the industrial chemical, bisphenol A (BPA). The chemical
properties of all organic contaminants are presented in Table 1. Compounds that are
expected to remain in the soil at the origin of application (Log Koc >3.5) are of exceptional
concern, given the effectively longer organism exposure periods and the potential for
increasing soil concentrations with repeated applications (Snyder et al. 2011).

Table 1. Chemical properties of organic contaminants.

Half-life (DT50)

Contaminant Cas. no Formula Log Kow Soil Water

Dioxin-like compounds
Polychlorinated

biphenyl (PCBs)
1336-36-3 C12H5Cl5 4.53-8.35 360 d 180 d

Polychlorinated dibenzo
dioxins/ furrans
(PCDD/Fs)

Varied C12H4Cl4O2 C12H4Cl4O2 5.6-8.1 360 d 180 d

Polybrominated
diphenyl ethers (PBDEs)

Varied C12H(10¡x,y)Brx,yO 5.53-8.58 360 d 180 d

PPCPs
(Anti-epileptic)
Carbamazepine 298-46-4 C15H12N2O 2.25 75 d 38 d
(Antimicrobial agents)
Triclosan 3380-34-5 C12H7Cl3O2 4.76 180 d 60 d
Triclocarban 101-20-2 C13H9Cl3N2O 4.2 120 d 60 d
(Beta-blockers)
Propranolol 318-98-9 C16H21NO2 ¢ HCl 3.48 30 d 15 d
Metoprolol 51384-51-1 C15H25NO3 1.88 75 d 15 d
Perfluorochemicals
Perfluorooctane
sulphonate (PFOS)

2795-39-3 C8F17SO3 4.88 360 d 180 d

Perfuorooctanoic acid
(PFOA)

335-67-1 C8HF17O3S 6.30 360 d 180 d

Steroids
Estrone E1 53-16-7 C18H22O2 3.13 75 d 38 d
Estradiol E2 50-28-2 C18H24O2 4.01 75 d 38 d
Alkyphenols
NP Varied C15H24O 5.76 30 d 15 d
NP1EO 27986-36-3 C17H28O2 4.48 75 d 38 d
NP2EO 20427-84-3 C18H30O3 4.17 120 d 60 d
Industrial chemical
Bisphenol A (BPA) 80-05-7 C15H16O2 4.20 75 d 38 d

All data was obtained from PBT profiler (USEPA 2012).

HUMAN AND ECOLOGICAL RISK ASSESSMENT 963



Environmental fate model

In Ireland, over 82% of the population (4.5 million) (CSO 2014) rely on the public water
supply for drinking water (Ireland EPA 2014). This water is sourced from rivers, lakes, and
reservoirs, while groundwater accounts for between 20–25% of the drinking water supply
(GSI 2014). The risk of organic contaminant leaching into surface water, groundwater, or
lakes from land spreading of biosolids may be estimated by the predicted environmental
concentration (PEC) models (soil, surface water, and groundwater), adopted from Trevisan
et al. (2009), which was originally designed for the PECs of pesticides in ground and surface
water in Germany. In the present study the approach developed by Trevisan and Padovani
(Padovani et al. 2004; Trevisan et al. 2009), is modified for use in Irish conditions (e.g., appli-
cation rates, rainfall rates, bulk density, slope, and soil organic carbon [SOC]).

With regard to organic contaminants, there is concern when elevated levels are released
into the environment or cause harm to humans. Therefore, the environmental fate of each
contaminant selected was assessed using parameters such as the initial concentrations in bio-
solids potentially spread on agricultural grassland, the concentration in soil post application,
potential subsequent runoff from land-spreading area into surface water, leaching into
groundwater, consumption of water, and overall toxicity. Each parameter can be used as a
basis to rank the human health risk from the consumption of contaminated water. Risk
ranking can be used to prioritise substances for focused risk management (Labite and Cum-
mins 2012). A flow diagram of the model processes are given in Figure 1.

Predicted environmental concentrations

PECsoil
The PECsoil was estimated by developing a distribution of contaminant exposure based on
the variability and uncertainty of the predicted environmental concentrations in biosolids.
The predicted concentration in the soil (PECsoil; mg/kg) was calculated based on the concen-
tration of the contaminant in the biosolids, application rate, mixing depth of soil and the soil
bulk density following biosolids application (Trevisan et al. 2009):

PECsoil D Csludge£APPL£ 1¡ fintð Þ� � 6 100£D£BDð Þ (1)

where Csludge is the concentration of the contaminant of interest in biosolids (g/m2), APPL is
the application rate of biosolids on agricultural land for one application (g/m2), fint is the
fraction intercepted by the crop (-), D is the depth (m), and BD is the soil bulk density (kg/m3).

Irish and European organic contaminant concentrations in biosolids were sourced
from peer reviewed journals and probabilistic distributions were fitted (Table 2) to
characterize uncertainty/variability. Uncertainty regarding the application rate was rep-
resented using a triangular distribution (minimum 300; mean 330; and maximum 520
g/m2) (Table 3). The application rate of biosolids was retrieved from Lucid et al.
(2013). It was assumed that the biosolids were spread on grassland. The fraction inter-
cepted by the crop was based on tabular interception fractions values as proposed by
Linders et al. (2000), which were based on field experiments found in the literature.
The authors adopted the approach that interception fraction plus the soil deposition
fraction is unity (Fint C Fsoil D 1). The study focuses on interception rather than
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Table 2. Model inputs, distributions, and outputs.

Stage Symbols Description Model/distribution Units

PECsoil

Csludge Concentration in biosolids Uniform or triangular
(contaminant specific)

(Table 3)

mg/kg

APPL Application rate Triangular (300,330,520) g/m2

D Depth 0.02 m
BD Bulk density Uniform (800,1000) kg/m3

fint Crop interception Triangular (0,10,20) %
Output PECsoil Csludge £ APPL£ (1- fint)

/ (100 £ BD £ D)
mg/kg

PECrunoff

Koc Soil adsorption coefficient Contaminant specific
(Table 3) (Uniform,
triangular, normal)

m3/kg

SOC Soil organic carbon content Cumulative (min 1.4, max
55.8), [2.86,3.56,4.92,7,14,

26,40.82,48]
[0.02,0.03,0.04,0.07,
0.14,0.4,0.4,0.5]

%

f1 Correction factor 0.02153 £ SLC
0.001423£ SL2

SL Slope 6.7 %
z Water body distance 0.02 m
f2 Effect of water body distance 0.830.02

DT50 Half-life in water Uniform (contaminant
specific)

d

fw Fraction of contaminant available for transport via runoff 100 £ e¡⊿tLn2/DT50 / 1 C
Koc £ SOC

–

P Maximum daily precipitation Fixed value mm/d
Output PECrunoff APPL£ (1- fint) £ f1 £ f2

£ fw / P
mg/l

PECgroundwater

KH Henry’s constant Contaminant specific
(Table 3)

–

Sc Sand content 47 %
Cc Clay content 19 %
OM Organic matter (Conversion SOC £ 1.724) %
FC Soil field capacity D 0.3486 – 0.018 £ % Sc

C 0.0039 £ % CcC
0.228 £ OM – 0.0738 £

BD /1000

cm3/cm3

PD Particle density Fixed value (2650) kg/m3

P Porosity 1- (BD £1000 / PD) –
AC Air content FC – P –
RF Retardation factor D 1 C (BD £ Soc £ Koc/

1000 / FC)C (AC£ KH /
FC)

P Precipitation Uniform (750,1500) mm/yr
E Evapotranspiration Fixed value mm/yr
ER Effective rainfall P - ER –
GL Groundwater level Uniform (0.5, 2.5) m
RC Recharge coefficient Triangular (0.4,0.7,1) –
Q Net recharge of water table ER £ RC m/yr
TR Average residence time GL £ RF £ FC / Q L/yr

(Continued)
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retention. Conceptually, it is assumed that both interception and deposition on soil are
instantaneous processes. The interception values are related to the growth phases as
defined in the BBCH (Biologische Bundesanstalt, Bundessortenamt und Chemische
Industrie) scale. The reasoning behind the proposed standard growth phase specific
interception fractions per crop is the rapid acquirement of intercepted fractions that
would otherwise be tedious and costly experiments. The estimates reflect the phenologi-
cal development of a crop in time by taking all major growth phases into account.
Crop interception can vary depending on the phenological stages (i.e., bare soil/emer-
gence has a value of 0 cm and potatoes >50 cm have an interception fraction of 89%
(Trevisan et al. 2009). Crop interception (fint) was estimated to be a triangular distribu-
tion (minimum 0, most likely 10 and maximum 20%) assuming a worst-case scenario.
The mixing depth (0.02 m) was obtained from Padovani et al. (2004) and the BD of
soil (800– 1000 kg/m3) (uniform distribution) were obtained from Vero et al. (2014),
which is a typical range for the upper 100 mm of the soil profile of Irish grasslands. It
was assumed that the application rates incorporated into this research were applied
according to the legal maximum rate to be applied to a phosphorus index 1 soil
(S.I.610 of 2010), based on dry solid content of amendment.

PECrunoff
The predicted concentration of organic contaminants in surface water due to runoff at a
delivery point to surface water (PECrunoff) retrieved from Trevisan et al. (2009) and modified
to suit Irish conditions in this study, was calculated by:

PECrunoff DAPPL£ 1¡ fintð Þ£f1£f2£fw 6 P (2)

where f1 is a correction factor that considers the field slope (6.7% based on an Irish field

Table 2. (Continued )

Stage Symbols Description Model/distribution Units

DT50 Half-life in soil Contaminant specific
(uniform, triangular)

d

AF Attenuation factor EXP (- 0.693) £ TR / DT50 –
H Thickness of water table Fixed value (2.2) m

Output LQ Leached quantity 2.739 £ AF £ APPL £ (1-
fint) / P £ H

mg/l

Human exposure

Wc Water consumption Adult Log normal
(0.564,0.617), Child Log
normal (0.238,0.208)

L

BW Body weight Adult normal (78.1,16.5),
Child normal (33,11.3)

Kg

HE Human exposure Wc£ PECrunoff / BW Wc£
PECgroundwater / BW

mg/kg bw/d

LC50 Median lethal concentration Contaminant specific
(Uniform, triangular)

Mg/l

Risk Ratio (LC50) RR Model Outputs LC50 / PECrunoff/groundwater
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Table 3. Organic contaminant input data.

Organic contaminant Distribution Min Median Max References

Dioxin-like compounds
PCBs
Log Koc (L/kg) Triangulara 0.01 4 6 a(Swackhamer and

Armstrong 1987; Chin et al.
1988; Hansen et al. 1999;
J€antschi 2004; Rodenburg

et al. 2010)
Csludge (mg/kg) Uniformb 9.2 277 b(Stevens et al. 2003; Abad

et al. 2005; Dąbrowska and
Rosinska 2012; Jensen et al.

2012)
LC50 (mg/l) Uniformc 0.9 2.8 c(Nebeker and Puglisi 1974;

Mayer et al. 1977; Veith
et al. 1979; Foekema et al.

2008)
Henry’s law constant (KH) Uniformd 3.40E-03 6.90E-01 d,e(Christensen and Li 2014;

Chemspider 2015)
DT50 half-life (days)-water Uniforme 37.5 180 e,f(USEPA PBT 2012)

-soil Uniformf 360 940

PCDD/F
Log Koc (L/kg) Triangulara 5.2 7.1 8.1 a(Fiedler 2003)
Csludge (mg/kg) Triangularb 0.005 0.8 2.4 b(McLachlan et al. 1996;

Oleszek-Kudlak et al. 2005;
Smith 2009)

LC50 (mg/l) Triangularc 0 0.3 1.1 c(Basmaa 2004; National
Dioxins Programme 2004;

Chem-UNEP 1996)
Henry’s law constant (KH) Uniformd 2.70E-02 1.20E-01 d(Cohen et al. 2002)
DT50 half-life (days)-water Uniforme 5 90 e,f(USEPA PBT 2012;

Chemspider 2015)
-soil Uniformf 395 708

Fire retardant
PBDEs
Log Koc (L/kg) Normala 5.1 0.9 a(Knoth et al. 2007; Eljarrat

et al. 2008)
Csludge (mg/kg) Triangularb 53.6 467 1,295 b(Hellstr€om 2000; Key et al.

2009; Usenko et al. 2011)
LC50 (mg/l) Uniformc 0 6.8 c(NICNIS 2007; Bramwell

et al. 2014)
Henry’s law constant (KH) Uniformd 3.30EC03 1.70EC02 d(Sander 1999)
DT50 half-life (days)-water Uniforme 90 150 e,f(USEPA PBT 2012;

Chemspider 2015)
-soil Uniformf 1440 3600

Pharmaceuticals and
personal care products
(PPCPs)

Carbamazepine
Log Koc (L/kg) Normala 2.6 0.7 a(Scheytt et al. 2005, 2006)
Csludge (mg/kg) Uniformb 0 1,300 b(Miao et al. 2005; D�ıaz-

Cruz et al. 2009)
LC50 (mg/l) Triangularc 0 41 61 c(Kim et al. 2007, 2009)
Henry’s law constant (KH) Uniformd 5.60E-02 3.90E-07 d,e(Chemsider 2015;

Kummerer 2013)
DT50 half-life (days)-water Uniforme 37.5 38 f(Walters et al. 2010; USEPA

PBT profiler 2012)
-soil Uniformf 75 495

(Continued)
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Table 3. (Continued )

Organic contaminant Distribution Min Median Max References

Triclosan
Log Koc (L/kg) Normala 4.1 0.3 a(Barron et al. 2009; Agyin-

Birikorang et al. 2010; Chen
et al. 2011; WFD 2012;
Gasperi et al. 2014)

Csludge (mg/kg) Triangularb 7.5 4859 14,400 b(Walters et al. 2010; Clarke
and Smith 2011; Davis et al.

2012)
c(Orvos et al. 2002; Santa Cruz

Biotechnology 2009; Wirud-
Ingredients 2015)

LC50 (mg/l) Uniformc 0.005 0.9 d(Thompson et al. 2005)
Henry’s law constant (KH) Uniformd 5.20E-04 1.30E-03 e(Chemsider 2015)
DT50 half-life (days)-water Uniforme 0 60 f(Wu et al. 2009)

-soil Uniformf 87 231

Triclocarban
Log Koc (L/kg) Triangulara 0 3.1 4.6 a(Ying et al. 2007; Cha and

Cupples 2010; King 2010)
Csludge (mg/kg) Triangularb 0 14,113 39,628 b(Chu and Metcalfe 2007;

Snyder et al. 2010;
McClellan and Halden

2010)
LC50 (mg/l) Triangularc 0.003 0.08 0.1 c(Palenske 2009; Higgins

et al. 2011; Maruya et al.
2014)

Henry’s law constant (KH) Uniformd 3.60E-05 8.30E-06 d,e(USEPA PBT profiler 2012;
Chemspider 2015)

DT50 half-life (days)-water Uniforme 0 60 f(Ying et al. 2007; Walters
et al. 2010)

-soil Uniformf 18 120

Propranolol
Log Koc (L/kg) Uniforma 2.3 3.9 a(Maurer et al. 2007; Morais

et al. 2013; Burke et al.
2013)

Csludge (mg/kg) Triangularb 0.002 0.3 0.96 b(Lee and Choi 2007;
Radjenovic et al. 2009;
Barron et al. 2010)

LC50 (mg/l) Triangularc 0 10 30 c(Stanley et al. 2006;
Verlicchi et al. 2012)

Henry’s law constant (KH) Uniformd 2.90E-09 5.10E-07 d(Toxnet 2014a)
DT50 half-life (days)-water Uniforme 0 15 e(Schnaak et al. 1997;

Caminada et al. 2006)
-soil Uniformf 0 30 f(Chemspider 2015)

Metoprolol
Log Koc (L/kg) Uniforma 1.2 2.4 a(Maurer et al. 2007; Morais

et al. 2013; Burke et al.
2013)

Csludge (mg/kg) Triangularb 0.03 0.3 0.8 b(Ternes 1998; Barron et al.
2008)

LC50 (mg/l) Uniformc 50 170 c(Sun et al. 2014; USP 2011;
American Reagent 2010)

Henry’s law constant (KH) Uniformd 5.00E-10 3.60E-08 d(Vieno et al. 2007)
DT50 half-life (days)-water Uniforme 0.3 7.5 e,f(USEPA PBT profiler 2012;

Chemspider 2015)
-soil Uniformf 0 54

(Continued)
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Table 3. (Continued )

Organic contaminant Distribution Min Median Max References

Industrial chemical
BPA
Log Koc (L/kg) Triangulara 2.3 2.8 3.9 a(Clara et al. 2004;

Ivashechkin et al. 2004;
Cunha et al. 2012; Yu et al.

2013)
Csludge (mg/kg) Uniformb 79.1 1778.9 b(Lee and Peart 2002)
LC50 (mg/l) Uniformc 0.002 12.2 c(CEPA 2009; Faheem and

Lone 2013; Hussain and
Mirza 2013)

Henry’s law constant (KH) Uniformd 3.60E-08 1.60E-07 d(Toxnet 2014b;
Guidechem 2015)

DT50 half-life (days)-water Uniforme 0.5 3 e(Klecka et al. 2001)
-soil Uniformf 3 37.5 f(Flint et al. 2012)

Perfluorochemicals
PFOS
Log Koc (L/kg) Uniform 2.1 4.9 a(Zareitalabad et al. 2013)
Csludge (mg/kg) Lognormal 9.2 15.4 b(Ye et al. 2009; Zheng et al.

2012)
LC50 (mg/l) Uniform 5.2 107 c(Ji et al. 2008)
Henry’s law constant (KH) Uniform 1.10E-05 4.90E-04 d(Brooke et al. 2004;

Benford et al. 2008)
DT50 half-life (days)-water Uniform 180 285 e(Environment Canada

2013)
-soil Uniform 0 360 f(USEPA PBT profiler 2012)

PFOA
Log Koc (L/kg) Triangulara 1.3 2.5 5 a(Zareitalabad et al. 2013)
Csludge (mg/kg) Triangularb 0 75 225 b(Jensen et al. 2012)
LC50 (mg/l) Uniformc 300 1005 c(Ji et al. 2008; Ye et al.

2009; Zheng et al. 2012)
Henry’s law constant (KH) Uniformd 3.70EC00 3.30EC02 d(Harrad 2009)
DT50 half-life (days)-water Uniforme 0 180 e,f(USEPA PBT profiler 2012;

Zheng et al. 2012)
-soil Uniformf 0 360

Steroids
17b-estradiol
Log Koc (L/kg) Triangular 2.9 3.8 5.6 a(Zoetis 2014)
Csludge (mg/kg) Triangular 6.9 21 36 b(Combalbert and

Hernandez-Raquet 2010)
LC50 (mg/l) Uniform 0.4 3.5 c(Kang et al. 2002; EU

Council 2011)
Henry’s law constant (KH) Uniform 2.80E-08 3.10E-08 d(NIEHS 2014; Chemspider

2015)
DT50 half-life (days)-water Uniform 3 46 e(Nagpal and Meays 2009)

-soil Uniform 0 3 f(USEPA PBT profiler 2012)

Estrone
Log Koc (L/kg) Uniforma 2.7 5.6 a(Pfizer 2007; Snyder and

Snyder 2009)
Csludge (mg/kg) Triangularb 0 12 36 b(Combalbert and

Hernandez-Raquet 2010;
Clarke and Smith 2011)

LC50 (mg/l) Uniformc 0 12 c(Kang et al. 2002;
Kashiwada et al. 2002; EU

Council 2011)

(Continued)
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study by Brennan et al. 2012) and estimated as:

f1D 0:02153£SlopeC 0:001423£Slope2 if slope< 20% (3)

f1 D 1 if slope � 20%
f2 is an empirical factor that takes into account the effect of the surface water body dis-

tance (z) and is calculated as:

Table 3. (Continued )

Organic contaminant Distribution Min Median Max References

Henry’s law constant (KH) Uniformd 4.80E-09 1.30E-06 d(Chemspider 2015;
National Center for

Biotechnology Information
nd)

DT50 half-life (days)-water Uniforme 2 6 e,f(Ying et al. 2002)
-soil Uniformf 2 3

Alkyphenols
NP
Log Koc (L/kg) Triangulara 0.02 3.6 5.4 a(Patrolecco et al. 2006;

Shchegolikhina et al. 2014;
Milinovic et al. 2015)

Csludge (mg/kg) Triangularb 721,79 295,189 870,224 b(La Guardia et al. 2009;
Roig et al. 2012; S�anchez-
Trujillo et al. 2014; Jones

et al. 2014)
LC50 (mg/l) Uniformc 0 1 c(Hemmer et al. 2001;

Kashiwada et al. 2002; WFD
2005)

Henry’s law constant (KH) Uniformd 5.60E-02 1.40E-01 d(Porter and Hayden 2002)
DT50 half-life (days)-water Uniforme 8.2 16.5 e(USEPA 2005)

-soil Uniformf 4.5 37 f(Marcomini et al. 1988)

NP1EO
Log Koc (L/kg) Uniforma 4 5.4 a(Patrolecco et al. 2006)
Csludge (mg/kg) Exponentialb 14.2 802,042 b(La Guardia et al. 2009)
LC50 (mg/l) Uniformc 0.1 1 c(Hemmer et al. 2001;

Kashiwada et al. 2002; WFD
2005; Soares et al. 2008)

Henry’s law constant (KH) Uniformd 5.80E-04 1.20E-03 d,e(USEPA PBT profiler 2013;
Chemspider 2015)

DT50 half-life (days)-water Uniforme 0.3 7.5 f(Marcomini et al. 1988)
-soil Uniformf 7 360

NP2EO
Log Koc (L/kg) Uniforma 0.001 6.5 a(Aparicio et al. 2009)
Csludge (mg/kg) Triangularb 19.3 148 928 b(La Guardia et al. 2009;

Gonz�alez et al. 2010)
LC50 (mg/l) Triangularc 0.08 0.34 0.8 c(TenEyck and Markee

2007)
Henry’s law constant (KH) Uniformd 9.30E-06 3.80E-05 d(Chemspider 2015)
DT50 half-life (days)-water Uniforme 0 60 e,f(ECHA 2013; Chemspider

2015)
-soil Uniformf 8 360 f(Marcomini et al. 1988)
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f2 D 0:83z (4)

fw is the fraction of the contaminant available for transport via surface runoff (%), calculated
as:

fwD 100£e¡⊿t2=DT50=1CKoc£SOC (5)

where DT50 is the soil half-life of the selected contaminant in soil (days). Soil half-life is con-
taminant specific and based on mean DT50 values. A uniform distribution was used to model
uncertainty in the data. Koc is the organic carbon-soil sorption coefficient (m3/kg) (contami-
nant specific). The type of distributions applied to represent the uncertainty regarding Koc
depended on the data collected for each individual contaminant, therefore uniform, triangu-
lar, and normal distributions were used to model Koc uncertainty (Table 3). SOC is the soil
organic carbon (%). To capture the uncertainty in the data, a continuous empirical distribu-
tion in the form of a cumulative distribution ranging from 1.40 to 55.8% was used (Table 2)
and were based on data from Fay et al. (2007).
Finally, P is the maximum daily precipitation (mm). The average maximum daily precipita-
tion for the past 30 years in Ireland, obtained from meteorological data, was 84 mm/day
(Met Eireann 2014).
Peer reviewed literature sources were examined for log Koc values for selected contaminants
as each Koc is contaminant specific. Where Koc values were not available, regression equa-
tions from Lynam et al. (1990) were used to estimate log Koc based on log Kow which is
defined as the ratio of a chemical’s concentration in the octanol phase to its concentration in
the aqueous phase of a two-phase octanol water system (USEPA 2009a). The Koc was calcu-
lated by:

Log Kocð ÞD 0:544£log Kowð ÞC 1:377 (6)

To represent uncertainty in the data, a distribution was applied which was uniform, triangu-
lar or normal (contaminant specific) (Table 3).
Soil organic carbon content and Koc are two of the major factors influencing the
mobility of organic contaminants (Labite and Cummins 2012). Increased SOC content
influences the Koc, and will most probably reduce leaching and plant uptake, which
will in turn increase the fraction of contaminant that accumulates in the soil (Sundstøl
Eriksen et al. 2009). The database of SOC in Ireland was recently updated through the
National Soil Database Project (Fay et al. 2007). A cumulative distribution was assigned
with values ranging from 1.40% to 55.8% (Table 2). A correlation matrix was created so
that the Koc and SOC inputs were not independent but correlated with each other. The
dependence between the SOC and Koc was confined by implementing a uniform corre-
lation coefficient with a minimum of 0.8 and a maximum of 0.95. These figures are
based on studies by Barriuso et al. (1991) and Zhao et al. (2006). A previous study by
Grathwohl (1990) reported similar results of the positive correlation between SOC and
Koc, indicating that the SOC greatly influences the sorption of hydrophobic organic
compounds in soil (Yang et al. 2013).
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PECgroundwater
The predicted environmental concentration of each contaminant in groundwater was calcu-
lated according to Trevisan et al. (2009) and Padovani et al. (2004), and was adapted for
Irish conditions. The model incorporates the retardation factor (RF), average residence time
(TR) in soil and subsoil, the attenuation factor (AF) and the leached quantity (LQ) (Figure 1).
The RF represents the delay in the contaminant leaching with regard to the migration
through the unsaturated zone (i.e., soil). This leaching delay is due to contaminant sorption
to soil and depends on the soil chemistry, contaminant gaseous and aqueous diffusion in
soil (Paraiba and Spadotto 2002). The RF in this study was calculated according to Padovani
et al. (2004) and is calculated by:

RFD 1C BD£SOC£Koc 6 FCð ÞC AC£KH 6 FCð Þ (7)

where FC is the soil field capacity (cm3 /cm3), Koc is the soil sorption coefficient (cm3/g), AC
is the soil air content (%) and KH is Henry’s constant (-)

The soil field capacity is defined as the maximum amount of water that a soil can hold by
capillary action before the water is drawn away by gravity, and was calculated according to:

FCD 0:3486¡ 0:018£Sc %ð ÞC 0:0039£Cc %ð ÞC 0:0228£OM¡ 0:0738£BD (8)

where the percentages of sand (Sc) (47%) and clay (Cc) (19%) were obtained from Brennan
et al. (2012), OM is the organic matter (%) (equal to SOC £ 1.724) (Labite and Cummins
2012), and BD is the bulk density (g/cm3).

The soil air content was expressed as the difference in soil field capacity and porosity (P)
(P – FC), and the latter was calculated according to:

PD 1¡BD£10006 PD (9)

where PD is the particle density (kg/m3). A default value of 2650 kg/m3 for particle density
after Posudin (2014) was used, and is consistent with what is found in Irish soils (Labite and
Cummins 2012).

Henry’s constant (KH) was retrieved from peer reviewed literature and was contaminant-
specific (Table 3). Where there was a lack of dimensionless data, Eq. (10) was used to convert
atm mol¡1 to a dimensionless form. The dimensionless air partition coefficient KH is given
as:

KH atm m3mol--1
� �DKH’6 RT (10)

where R is the universal gas constant 0.08206 (L atm mol¡1 K¡1) and T is temperature
298.15 (K).

The attenuation factor is a means of evaluating the amount of chemical transport through
the unsaturated zone to the water table, and is defined as the fraction of the contaminant
applied at soil surface that is likely to leach with values ranging from 0 to 1 (Labite and
Cummins 2012). The attenuation factor was calculated according to Trevisan et al. (2009):

AFD exp --TR£ln26 DT50 (11)
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where AF is the attenuation factor (-), DT50 is the half-life in soil (d) and is contaminant-
specific and based on available data (Table 3). A uniform distribution was used to model
uncertainty in soil half-life. Finally, TR is the average residence time (L/Yr) according to
Trevisan et al. (2009) and is calculated by:

TRDGL£RF£FC 6 Q (12)

where GL is the depth (groundwater level) of the water table layer (m), Q is the net recharge
of the water table layer (m/yr) and can be estimated by rainfall and evaporation of the study
area. The rainfall in Ireland is variable. Therefore, to capture the uncertainty a uniform dis-
tribution was assigned (minimum of 750, maximum of 1500 mm), while the evaporation
rate was estimated to be 500 mm/yr (Met Eireann 2014).

The leached quantity was calculated after Trevisan et al. (2009):

LQD 2:739£AF£APPL£ 1¡ fintð Þ6 P£H (13)

where LQ is the leached quantity (mg/l), AF is the attenuation factor (-) [from Eq. (11)],
APPL is the application rate (g/cm2), fint is the fraction intercepted from crop (%), and H is
the thickness of the water table (m)

Human and environmental risk assessment
Human exposure. As a “worst case scenario” it was assumed that the water was abstracted
for drinking pre-drinking water treatment. The amount of contaminant that may be ingested
by humans through drinking water each day was estimated by:

HEDWc£PECrunoff 6 groundwater 6 BW (14)

where HE is human exposure through chemical intake (mg/l), Wc is water consumption (L/
day), and BW is body weight of an adult (kg). The amount of water consumed was based on
two separate surveys conducted by The Irish Universities Nutrition Alliance (IUNA). The
National Adult Nutrition Survey (2011) assessed the consumption and body weights of 1500
Irish consumers (IUNA 2011) and The National Children’s Food Survey (2003–2004)
assessed the consumption and body weights of 594 children (IUNA 2005). A log normal dis-
tribution was used to model the uncertainty regarding the intake of water and includes a
mean consumption of 0.564 § 0.617 L day¡1 for adults and a mean consumption of 0.238 §
0.208 L day¡1 for children (IUNA 2005, 2011, respectively). A similar approach was taken
by Cummins et al. (2010). Using the same surveys from IUNA, the average body weights of
men and women and children were obtained. A normal distribution with a mean value of 78
§ 16.5 kg was used to model the variation in body weight for adults and a normal distribu-
tion with a mean value of 33 § 11.3 kg was used to model variation in body weight for chil-
dren (IUNA 2005, 2011, respectively). A summary of all model inputs and calculations is
provided in Table 2.

Toxicity. Toxicity was calculated by using the lethal concentration (LC50). There is a
lack of mammalian toxicity data, particularly for emerging contaminates, hence the
decision to use fish and fish embryos toxicity data. Fish have been used as sentinels for
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the quality of waters that serve as sources for human drinking water (Lammer et al.
2009). Using peer reviewed literature, the LC50 (fish and fish embryos) of each contam-
inant was obtained. The toxicity of organic contaminants on fish (acute toxicity) and
fish embryos has been widely reported (Teneyck and Markee 2007; Ji et al. 2008; Kim
et al. 2009: Ye et al. 2009), therefore, a considerable amount of experimental data could
be compiled and reviewed. The application of the LC50 has gained acceptance among
toxicologist and is generally the most highly rated test for assessing potential adverse
effects of chemicals (Johnson and Finley 1980). Guilhermino et al. (2000) compared
acute toxicity of 54 chemicals to Daphnia magna, expressed as 24- and 48-h LC50 val-
ues and the corresponding oral LD50 value for the rat. Results show a high correlation
between acute toxicity of some chemicals to D. magna and the corresponding LD50 val-
ues for the rat. The study concluded that the D. Magna test was more specific than
sensitive for an indication of toxicity to the rat and the use of invertebrates should be
considered as a pre-screening method for assessment of the toxicity of new chemicals
for classification and labeling purposes. Within the EU there are extensive regulatory
requirements for fish acute toxicity data on individual chemicals both for environmen-
tal risk assessment and hazard classification (Braunbeck et al. 2005). A combination of
uniform and triangular distributions was incorporated to capture variability. Full details of
model data are available in Table 3. The risk ratio is the estimated and measured exposure to
the toxicity. When the risk ratio is < 1, this would suggest that the level of risk is low. When
the risk ratio is >1, the risk is high (Labite and Cummins 2012). To calculate the risk ratio
(LC50), the PECrunoff and PEC groundwater was incorporated in:

RR LC50ð ÞDPECrunoff ; groundwater 6 LC50 (15)

The entire model was constructed in Microsoft Excel 2010 (with the @Risk 6.0 add-on)
(V4.5, Palisade Corporation, Newfield, NY) using Monte Carlo simulation techniques and
run for 10,000 iterations.

Results and discussion

The environmental fate of selected organic contaminants was modeled from biosolid appli-
cation to drinking water consumption. The risk ranking model resulted in several output
distributions that can be used to compare the selected organic contaminants that are
detected in biosolids and subsequently applied to agricultural land and their potential risk to
human health. Outputs from the model include the PECsoil of each contaminant, subsequent
PECrunoff to surface water and PECgroundwater, the chemical intake risk ratio (RR) based on
the LC50 combined with PECrunoff and PECgroundwater. Table 4 shows the mean simulated
ranking results according to PECsoil, PECrunoff and PECgroundwater.

PECsoil

The results of the PECsoil indicate that from the contaminants analyzed, the contaminants
NP and NP1EO and NP2EO ranked the highest, with mean PECsoil values of 5.69 mg/kg,
1.72 mg/kg, and 1.44 mg/kg (95th percentiles 13.69 mg/kg, 5.14 mg/kg and 2.88 mg/kg,
respectively) as shown in Table 4. This was attributed to the initial high concentrations of
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NP, NP1EO, and NP2EO in the biosolids (mean values 103.8, 83.3, and 25.7 mg/kg, respec-
tively), with NP and NP1EO exceeding the critical levels of 50 mg/kg dry mass (dm), as sug-
gested by the European Union Working Document on Sludge 3rd draft (€Omero�glu et al.
2015). Recently, Mao et al. (2012) reported that NP was the most abundant compound in
raw wastewater as well as effluents from all stages of wastewater treatment. Furthermore,
during wastewater treatment NP accumulated in sewage sludge at concentrations of several
hundred mg/kg. This highlights the significance of effective wastewater treatment.

PECrunoff and PECgroundwater

The results for PECrunoff revealed that the highest values obtained were from NP, NP1EO
and NP2EO, with mean values of 1.17 £ 10¡2 mg/l, 4.13 £ 10¡3 mg/l and 3.36 £ 10¡3 mg/l
(95th percentiles 4.08 £ 10¡2 mg/l, 1.36 £ 10¡2 mg/l and 9.99 £ 10¡3 mg/l, respectively)
(Table 4). Petrovic et al. (2002) reported surface water body concentrations of nonylphenols
between 0.5 mg/l to 15 mg/l. This was attributed to the proximity of the wastewater treatment
plant to the receiving waters and the initial concentrations.in the sludge (85 and 172 mg/kg).
The fate of NP, NP1EO, and NP2EO in each environmental compartment (soil, surface run-
off, and groundwater) is controlled primarily by its physical chemistry properties, which in
turn influences its degradation. These compounds will partition favourably to organic matter
due to being highly hydrophobic (log Koc � 4.6) with low mobility and low water solubility
(Soares et al. 2008). Therefore, comparisons of nonylphenol concentrations between soils
and surface water will show higher concentrations in soils. NP, NP1EO, and NP2EO ranked
highest for PECgroundwater with mean values of 2.2 £ 10¡1 mg/l, 1.8 £ 10¡2 mg/l and 9.1 £
10¡2 mg/l (95th percentiles 1.2 mg/l, 5.5 £ 10¡1 mg/l and 3.8 £ 10¡1 mg/l, respectively)
(Table 4). Following agricultural practices, Careghini et al. (2014) reported concentrations
of nonylphenols in groundwater with values between below 0.01 (detection limit) and
0.90 mg/l. Engstrom et al. (2006) measured NP concentrations in biosolid amended soils
over a 4- to 12-month period. Results show that leachate NP concentrations were never

Table 4. Risk ranking of PECsoil, runoff, groundwater.

Ranking according to PECsoil, runoff, and groundwater

mean (5th, 95th percentiles)

Contaminant PECsoil (mg/kg) Rank PECrunoff (mg/l) Rank PECgroundwater (mg/l) Rank

NP 5.69 (4.4e-01, 13.6) 1 1.1e-02 (1.8e-04, 4.8e-02) 1 2.22e-01 (0, 1.27) 1
NP1EO 1.72 (8.6e-02, 5.14) 2 4.1e-03 (1.7e-04, 1.3e-02) 2 1.84e-01 (9.1e-03, 5.5e-01) 2
NP2EO 1.44 (1.3e-01, 2.88) 3 3.3e-03 (1.3e-05, 9.9e-03) 3 9.11e-02 (0, 3.8e-01) 3
Triclocarban 2.7e-01 (4.3e-02, 6.1e-01) 4 8e-04 (6.2e-05, 2.1e-03) 4 1.4e-02 (1.9e-68, 6.4e-02) 4
Triclosan 3.1e-02 (2.3e-03,7.3e-02) 5 1.8e-04 (4.9e-06, 6.2e-04) 5 3.5e-04 (0, 1.4e-03) 6
BPA 1.7e-02 (3.1e-03, .3.4e 02) 6 6.6e-05 (1.0e-05,1.3e-04) 6 2.4e-0 (9.5e-77, 1.5e-03) 7
Carbamazepine 1.2e-02 (1.2e-03,2.5e-02) 7 4.7e-05 (4.2e-06, 1e-04) 7 1.1e-03 (3e-10,3.3e-03) 5
PBDEs 9e-03 (1.6e-03,2e-02) 8 6.2e-06 (1.9e-08, 2.9e-05) 8 2.1e-05 (0, .1.1e-04) 10
PCBs 1.7e-03 (1.3e-04, 4.2e-03) 9 3.4e-06 (2.3e-08, 1.3e-05) 10 9.5e-05 (1.5e-171, 4.6e-04) 9
PFOA 1.4e-03 (1.2e-04, 3.4e-03) 10 5.2e-06 (3.4e-07, 1.3e-05) 9 1e-04 (1.9e-40, 3.9e-04) 8
PFOS 5.6e-04 (2.1e-04,1.1e-03) 11 1.4e-06 (1.1e-07, 3.6e-06) 11 1.2e-05 (2.1e-224, 7e-05) 11
17bEstradiol 4.1e-04 (1.4e-04, 8e-03) 12 5.6e-07 (3.3e-08, 1.4e-06) 12 2.2e-07 (0, 2.4e-07) 14
Estrone 2.3e-04 (1.9e-05, 5.5e-04) 13 2.4e-07 (3.4e-09, 8.6e-06) 13 2.5e-06 (0, 1.6e-05) 12
PCDD/Fs 1.5e-05 (1.2e-06, 3.6e-05) 14 2.3e-10 (7.2e-13, 9.1e-10) 16 7.6e-16 (0, 3.5e-100) 16
Propranolol 6.2e-06 (4.7e-07,1.4e-05) 15 1.8e-08 (1.2e-09, 4.8e-08) 15 7.1e-08 (8.8e-84, 4.7e-07) 15
Metoprolol 5.8e-06 (1.0e-06,1.3e-05) 16 2.4e-08 (4.3e-09,5.2e-08) 14 6.6e-07 (4.8e-08, 1.7e-06) 13
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higher than 7.5 mg/L and decreased to 1.5 mg/L after a four month period. Nonylphenols
were degraded in agricultural soil with a half-life in the order of months. The top ranking
contaminants for PECrunoff (NP, NP1EO, and NP2EO) are below the Water Framework
Directive threshold value (0.3 mg/l) for annual average. Although the predicted concentra-
tions in runoff and groundwater are below the threshold value, it is imperative to note that
these contaminants are continuously released into the environment.

Human exposure/toxicity

Drinking water consumption was combined with body weight and PECrunoff to yield a chem-
ical exposure estimate. Results showed that the contaminants that ranked the highest for
adult and child consumption were NP, NP1EO and NP2EO, with mean values of 8.6 £
10¡5, 3.1 £ 10¡5 and 2.5 £ 10¡5 mg/kg bw/d, respectively, for adult consumption and
9.27 £ 10¡5, 3.4 £ 10¡5, and 2.2 £ 10¡5 mg/kg bw/d, respectively, for child consumption
(Table 5, Figure 2). HE and PECgroundwater showed that N,P NP1EO, and NP2EO ranked the
highest for adult and child consumption, with mean values 1.6 £ 10¡3, 1.4 £ 10¡3 and
7.0 £ 10¡4 mg/kg bw/d, respectively, for adult consumption and 2.0 £ 10¡3, 1.6 £ 10¡3, and
5.1 £ 10¡4 mg/kg bw/d, respectively, for child consumption (Table 5, Figure 3). There was a
significant difference in human exposure between adult and child. Child consumption con-
centrations were higher in PECrunoff and PECgroundwater for NP, NP1EO, and NP2EO (see
below). Although all concentrations consumed are deemed low, children have different
exposures to environmental contaminants from those of adults. Their physiological develop-
ments are often subjected to higher exposure of contaminants found in food, water and air.
These exposures may be handled quite differently by an immature set of physiological sys-
tems to the way they are dealt with by adults. The WHO states that “the developmental com-
ponent of a child’s physiology is changing: maturing, differentiating and growing in phases
known as ‘developmental windows’. These ‘critical windows of vulnerability’ have no parallel
in adult physiology and create unique risks for children exposed to contaminants that can

Table 5. Comparison of human exposure (consumption) between PECrunoff and PECgroundwater.

Human exposure combined with PECrunoff (mg/kg bw/d) Human exposure combined with PECgroundwater (mg/kg bw/d)

Contaminant Adult Child Rank Adult Child Rank

NP 8.5e-05 9.7e-05 1 1.5e-03 2.2e-03 1
NP1EO 3.0e-05 3.4e-05 2 1.4e-03 1.6e-03 2
NP2EO 2.8e-05 2.2e-05 3 7.2e-04 5.1e-04 3
Triclocarban 5.9e-06 6.1e-06 4 8.2e-05 9.0e-05 4
Triclosan 6e-06 1.3e-06 5 2.2e-06 2.6e-05 6
Carbamazepine 3.7e-07 4.0e-07 6 1.9e-06 2.5e-06 5
BPA 4.9e-07 1.3e-07 7 9e-06 4.5e-06 7
PBDES 4.5e-08 1.3e-08 8 1.6e-07 8.0e-07 8
PFOA 3.9e-08 1.2e-08 9 7.7e-07 3.2e-10 14
PCB 2.7e-08 5.9e-08 10 7.7e-07 2.4e-07 9
PFOS 1e-08 3.3e-08 11 8.9e-08 1.6e-07 10
17b Estradiol 4.2e-09 1.1e-09 12 1.5e-09 3.6e-12 15
Estrone 1.8e-09 4.8e-09 13 1.8e-08 2.2e-09 12
Metoprolol 1.8e-10 6.1e-10 14 5e-09 3.5e-09 11
Propranolol 1.3e-10 3.5e-10 15 5.4e-10 7.3e-10 13
PCDD/Fs 1.5e-12 7e-12 16 7.8e-18 1.3e-17 16

976 R. CLARKE ET AL:



alter normal function and structure” (WHO 2008, p 5). The daily intake values estimated in
the present study for NP, NP1EO, and NP2EO are much lower than the 5 mg/kg bw/d toler-
able daily intake (TDI) of NP proposed by the Danish Environmental Protection Agency
(Ademollo et al. 2008; Li et al. 2010). Diet is the main route of exposure of nonylphenols in
humans. Maggioni et al. (2013) evaluated concentrations of NP from 35 public drinking
fountains and bottled mineral waters in Italian cities and found that NP was detected in
ranges from 7.7 mg/l to 84 mg/l. Based on bottled water consumption, it was estimated that
the average daily intake varies between 0.36 and 0.60 mg/d for adults (Careghini et al. 2014).

According to the LC50 risk ranking results for human exposure (LC50 RR PECrunoff), the
top ranked contaminants considered to be a risk to human health include NP, NP1EO and
NP2EO with mean LC50 RR PECrunoff values of 1.10 £ 10¡4, 3.94 £ 10¡5, and 1.35 £ 10¡5,
respectively (Table 6). Similarly, the results of the LC50 RR PECgroundwater also included NP,
NP1EO, and NP2EO (Table 6). Mean values for LC50 RR PECgroundwater were 2.40 £ 10¡3,
1.64 £ 10¡3, and 3.66 £ 10¡4 for NP1EO, NP, and triclocarban, respectively. The

Figure 2. Human exposure based on PECrunoff (adult and child).

Figure 3. Human exposure based on PECgroundwater (adult and child).
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contaminants that follow NP, NP1EO, and NP2EO in the rankings are the personal care
products (PCPs), triclocarban, and triclosan. These PCPs are classed as fungicides and bac-
teriostats; therefore they have numerous applications in consumer markets. TCS and TCC
can be found in soaps, detergents, and even in pacifiers (Halden 2014). On December 16,
2013, the US Food and Drug Administration proposed a rule that would require manufac-
turers to demonstrate the safety and effectiveness of antimicrobials (USFDA 2015). This pro-
posal came 40 years after the first attempt to regulate TCC and TCS despite toxicological
reports regarding its endocrine disrupting properties and protagonists of antibiotic drug
resistance (Halden 2014). Recently, the European Chemicals Agency (ECHA) announced
that TCS will be phased out for hygienic uses and replaced by more suitable alternative due
to its toxic and bioaccumulative properties (ECHA 2015). As the nonylphenols are restricted
in use in the EU under the 2003/53/EC Directive (EC 2003), which restricts the use and mar-
keting of in Europe of products and product formulations that contain more than 0.1% NP
or NPE (TFL 2007), it should see the decline of these products and its detection in the envi-
ronment. However, detection of ECs such as triclocarban and triclosan are increasing in bio-
solids and surface waters. These chemicals are beginning to be classified as priority
substances and substituted; however, their bioaccumulative properties may still persist in
soil and water bodies for decades to come. With the anticipation of greener pharmaceuticals
being developed, antimicrobials may be created that will be of low toxicity to terrestrial and
aquatic organisms and rapidly degrade in the environment.

The risk ranking conducted in the present study can be used to highlight contaminants
that may pose a risk to human health from potential transportation of contaminants in bio-
solids applied to agricultural land through to drinking water. A similar study has been con-
ducted by Cooper et al. (2008) that ranked numerous pharmaceuticals that pose the greatest
risk to the environment. Ranking was based on consumption rates, surface water concentra-
tions, effluent concentrations, environmental and biological half-lives, mammal, fish and
crustacean toxicity octanol-water partition coefficients (Kow) and solubility. The results
show that the pharmaceuticals most commonly ranked were those that were classed as

Table 6. Comparison of human exposure (PECrunoff and PECgroundwater) combined with LC50.

Ranking according to human health based risk
Results based on mean PECrunoff and PECgroundwater combined with LC50 (RR)

Contaminant (RR) PECrunoff Rank (RR) PECgroundwater Rank

NP 1.10e-04 1 2.40e-03 1
NP1EO 3.94e-05 2 1.64e-03 2
NP2EO 1.35e-05 3 3.66e-04 3
Triclocarban 1.20e-05 4 1.80e-04 4
Triclosan 4.45e-06 5 7.40e-06 5
PCBs 4.45e-06 6 1.26e-06 6
BPA 2.92e-08 7 1.77e-07 7
PBDE 7.42e-09 8 9.68e-08 8
Carbamazepine 1.48e-09 9 3.79e-08 9
17b Estradiol 1.29E-09 10 2.40E-14 15
Estrone 1.61E-10 11 1.21E-10 11
PFOS 1.36E-10 12 1.76e-09 10
PFOA 1.23E-11 13 5.65E-14 14
PCDD/Fs 6.10E-12 14 1.56E-16 16
Propranolol 3.19E-12 15 6.95E-12 12
Metoprolol 2.11E-13 16 4.44E-12 13
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central nervous system drugs (e.g., anti-inflammatory drugs and psychotherapeutic drugs)
followed by cardiovascular drugs and anti-infective drugs. It was found that prescription
usage greatly influenced what compounds ranked the highest. The study also highlighted the
lack or abundance of data for some of the pharmaceuticals as some of the pharmaceuticals
that ranked highest were driven by known toxicity. Coutu et al. (2012) also conducted a risk
ranking of several pharmaceuticals in the environment. The study enables ranking of the
hazard, not risk, to aquatic species and human health. Hazard assessment was based on the
physio-chemical properties of each pharmaceutical. Results show that the hormones ethiny-
lestradiol and testosterone ranked the highest along with the antibiotic erythromycin A.
There are concerns that risk assessments focus on the contaminants that are commonly con-
sumed, or on conventional contaminants such as legacy pollutants. Daughton (2014)
describes a psychosocial phenomenon known as the “Matthew effect,” omore commonly
known as “the bandwagon effect.” The authors describe the phenomenon as “the promi-
nence of a few contaminants targeted for investigation is dictated largely by the attention
devoted to them in the past.” This can be seen by the repetitiveness of contaminants studies
in peer-reviewed literature. The concern lies in the contaminants that escape scrutiny due to
the lack of monitoring, available data, and regulation. This study highlights the need for
more wide-ranging contaminant monitoring as many contaminants such as high production
volume pharmaceuticals have not been detected in the environment but are estimated to be
persistent and/or bioaccumulative.

Sensitivity analysis

A sensitivity analysis based on the rank order correlation coefficient was conducted for NP
as this contaminant ranked the highest across all of the environmental compartments. Sensi-
tivity analysis assesses how the model predictions are dependent on variability and uncer-
tainty in the model’s inputs. Results revealed that soil Koc and SOC were the most

Figure 4. Sensitivity analysis of correlation coefficient (Spearman Rank) model input parameters for NP.
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important parameters (correlation coefficient values –0.89 and –0.30, respectively) that
affected the variance in model predictions (Figure 4). This highlights the importance of soil
and site conditions (SOC, DT50-soil,) influencing the runoff and leaching of the contami-
nants to groundwater as well as contaminant properties (Koc) in influencing risk estimates.
This directs future research in highlighting the need to reduce these uncertainty inputs to
improve model estimates. Furthermore, the sensitivity analysis results also show water table
depth, groundwater recharge and precipitation as other parameters of importance in the
human health risk model.

Conclusions

A probalistic model was developed to rank “legacy” and EC according to PECsoil, PECrunoff,
and PECgroundwater and resulting human health risk (RR). The highest rank obtained for
PECsoil, PECrunoff and PECgroundwater was the surfactant NP and its ethoxylates NP1EO and
NP2EO. The PECrunoff and PECgroundwater were combined with drinking water consumption
and body weights of adults and children to give the likely human exposure. The toxicity end-
point LC50 was combined with PECrunoff and PECgroundwater to give the chemical intake toxic-
ity ratio (RR). The LC50 combined with PECrunoff and PECgroundwater revealed that NP,
NP1EO, and NP2EO ranked the highest. A sensitivity analysis revealed that Koc and SOC
were the most important parameters that affected model variance. This indicates that the
consistency of the unsaturated zone (soil/subsoil/bedrock) that biosolids are spread on and
chemical properties are critical in controlling human health risk. Although the nonylphenols
ranked highest in this study, it is important to note that these contaminants are either
restricted or banned in Europe since 2005; therefore, these contaminants may be considered
low risk. However, they still persist in the environment. The contaminants that ranked just
below the nonylphenols, such as triclocarban and triclosan, can be considered more of an
evolving risk as these contaminants are emerging and have only recently been restricted
within the European Union. The model developed in this study is of importance for risk
managers in providing a ranking of potential chemical hazards resulting from the spreading
of biosolids on agricultural land, while highlighting some emerging contaminants requiring
vigilance in the future.
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