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Opportunistic macroalgal blooms have been used for the assessment of the ecological
status of coastal and estuarine areas in Europe. The use of earth observation (EO)
data sets to map green algal cover based on a Normalized Difference Vegetation
Index (NDVI) was explored. Scenes from Sentinel-2A/B, Landsat-5, and Landsat-8
missions were processed for eight different Irish estuaries of moderate, poor, and bad
ecological status using European Union Water Framework Directive (WFD) classification
for transitional water bodies. Images acquired during low-tide conditions from 2010 to
2018 within 18 days of field surveys were considered. The estimates of percentage
coverage obtained from different EO data sources and field surveys were significantly
correlated (R2 = 0.94) with Cohen’s kappa coefficient of 0.69± 0.13. The results showed
that the NDVI technique could be successfully applied to map the coverage of the
blooms and to monitor estuarine areas in conjunction with other monitoring activities
that involve field sampling and surveys. The combination of wide-spread cloud-coverage
and high-tide conditions provided additional constraints during the image selection. The
findings showed that both Sentinel-2 and Landsat scenes could be utilized to estimate
bloom coverage. Moreover, Landsat, because of its legacy program, can be utilized
to reconstruct the blooms using historical archival data. Considering the importance
of biomass for understanding the severity of algal accumulations, an artificial neural
networks (ANN) model was trained using the in situ historical biomass samples and the
combination of radar backscatter (Sentinel-1) and optical reflectance in the visible and
near-infrared (NIR) regions (Sentinel-2) to predict the biomass quantity. The ANN model
based on multispectral imagery was suitable to estimate biomass quantity (R2 = 0.74).
The model performance could be improved with the addition of more training samples.
The developed methodology can be applied in other areas experiencing macroalgal
blooms in a simple, cost-effective, and efficient way. The study has demonstrated that
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GRAPHICAL ABSTRACT | Overall research workflow showing data types, study area, model development and biomass results.

both the NDVI-based technique to map spatial coverage of macroalgal blooms and
the ANN-based model to compute biomass have the potential to become an effective
complementary tool for monitoring macroalgal blooms where the existing monitoring
efforts can leverage the benefits of EO data sets.

Keywords: Sentinel-1/2, Landsat, earth observation, macroalgal blooms, Ulva, green tides, biomass computation,
artificial neural network

HIGHLIGHTS

- Mapped green Ulva blooms across eight coastal
areas of Ireland.

- Bloom extent mapped using Normalized Difference
Vegetation Index delineation.

- Developed artificial neural networks (ANN) model to
compute bloom biomass.

- The biomass model utilized optical, radar, and in situ data
from field surveys.

- Developed technique could be used in conjunction with
traditional monitoring.

INTRODUCTION

Estuarine and coastal areas play a crucial socio-economic,
biological, and environmental role as these environments provide
multiple ecosystem goods and services, making them some of
the most valuable ecosystems on earth (Costanza et al., 1997;
Donkersloot and Menzies, 2015; Norton et al., 2018). Due to
their high value, these areas have been focal points of human
settlement and resource exploitation (Lotze et al., 2006), resulting
in a long history of over-exploitation, habitat transformation,
and pollution. This legacy has undermined ecological resilience

and has obscured the magnitude of degradation in estuarine and
coastal environments (Lotze et al., 2006; Airoldi and Beck, 2007).

Estuarine and coastal waters worldwide have been facing the
problem of eutrophication and macroalgal blooms (Teichberg
et al., 2010). In Europe, eutrophication is considered one of the
main threats for aquatic ecosystems (Airoldi and Beck, 2007;
Hering et al., 2010). This process is directly linked with nutrient
over-enrichment because of increasing anthropogenic nutrient
loadings, which significantly increased after the generalized use
of industrial fertilizers following the second world war (Cloern,
2001; Lotze et al., 2006; Diaz and Rosenberg, 2008). Due to
the hydrological and ecological characteristics of estuaries, they
are particularly susceptible to over-enrichment of nutrients and
other pollutants from anthropogenic activities (Sfriso et al.,
1992; Eyre and Ferguson, 2002). A clear sign of nutrient
enrichment and environmental degradation in estuaries is the
development of opportunistic macroalgal blooms and the loss
of seagrass meadows (Valiela et al., 1997; Teichberg et al., 2010;
Bermejo et al., 2019a). Considering the common usage of the
terms, macroalgal bloom and seaweed tides, these are used
interchangeably in the present paper.

Macroalgal blooms undermine the ecosystem services that
estuaries provide, and affect ecosystem functioning (Smetacek
and Zingone, 2013). As in other parts of the world, some
Irish estuaries contained large green tides in recent years
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(EPA, 2006; Ní Longphuirt et al., 2016; Wan et al., 2017). A recent
Environmental Protection Agency (EPA) report (EPA, 2019)
has found that transitional waters (i.e., estuaries and coastal
lagoons) in Ireland have poorer water quality when compared
with other water typologies (i.e., groundwater, rivers, lakes, and
coastal waters), with only 38% of water bodies in good or better
ecological status.

The EU Water Framework Directive (WFD) 2000/60/EC
(European Commission, 2000) and Marine Strategy Framework
Directive (MSFD) (2008/56/EC; European Commission, 2008)
are two of the most ambitious initiatives to prevent further
deterioration of water bodies and associated ecosystems (Wan
et al., 2017; Boon et al., 2020). These directives represent a change
in the scope of water management from the local to the basin scale
(Apitz et al., 2006). They are based on an ecological approach
rather than a traditional physicochemical assessment (European
Commission, 2000). This more recent approach is more holistic
since it puts the ecosystem at the center of management decisions
by considering ecology and biology at a larger scale (e.g., the
whole river basin or adjacent coastal area) (Borja, 2005). Both
directives require that coastal areas are periodically monitored
to assess their achievement of “Good Ecological Status” and
“Good Environmental Status” as per WFD and MFSD targets,
respectively. The large expansion in monitoring required by the
WFD and MFSD has created pressure from governments on
their regulatory agencies to reduce the costs of monitoring while
maintaining coverage and effectiveness (Borja and Elliott, 2013;
Carvalho et al., 2019).

Marine macrophytes, including macroalgae and angiosperms
such as saltmarsh and seagrass communities, are biological
quality elements used to monitor and assess the ecological status
of transitional and coastal waters for the WFD (e.g., Scanlan
et al., 2007; Wells et al., 2007; Bermejo et al., 2012, 2013). Across
the EU, monitoring of opportunistic macroalgal blooms is used
to assess the ecological status (Scanlan et al., 2007; Wan et al.,
2017), based on the relative coverage and biomass abundance
of opportunistic macroalgae (Wilkes et al., 2018). Monitoring of
coastal and estuarine environments can be demanding in terms
of time, labor, costs, and sometimes can pose significant logistical
challenges (European Commission, 2008) such as coordination
of field equipment, survey procedures, means of transportation,
field crew, and safety. The gathering of this information in muddy
environments, especially the mapping of macroalgal blooms,
can present several impediments as it frequently requires the
use of specialized vehicles such as hovercrafts, or can be very
labor intensive. Although these field surveys are systematic and
provide high-quality data regarding spatial coverage and biomass,
the cost of such works could range from medium to high
(Scanlan et al., 2007).

Remote sensing can offer an affordable complementary
solution to field-based environmental monitoring. Remote
sensing data sets can be freely available, provide wide spatial
and temporal coverage, and easily allow methodological
standardizations and comparability. A conventional remote
sensing technique such as aerial photography has been applied
to map seagrass and macroalgal distribution in coastal and
estuarine environments (Jeffrey et al., 1995; Hernandez-Cruz

et al., 2006; Nezlin et al., 2007). Similarly, the application of
earth observation (EO) satellite data to assess the severity and
extension of algal blooms in coastal environments has grown
in recent years (Cristina et al., 2015; Xing and Hu, 2016; Zhang
et al., 2019). With the continued development of technology,
unmanned aerial vehicles (UAV) are also being used to monitor
green tides and seaweed blooms in marine environments (Xu F.
et al., 2017; Bermejo et al., 2019b; Taddia et al., 2019; Jiang
et al., 2020). Remote sensing methods have been shown to
provide reasonable estimates of the algal coverage on the ground
(Hernandez-Cruz et al., 2006; Nezlin et al., 2007), but with
the availability of EO data sets with higher temporal, spatial,
and spectral resolution, further improvement and development
can be attained.

Different techniques such as image thresholding (Cavanaugh
et al., 2010, 2011; Cui et al., 2012; Bell et al., 2015), visual
interpretation (Donnellan and Foster, 1999; Gower et al., 2006;
Pfister et al., 2017), supervised classification (Volent et al., 2007;
Casal et al., 2011; Bermejo et al., 2020), and unsupervised
classification (Fyfe et al., 1999; Duffy et al., 2018) have been used
in vegetation mapping in coastal and estuarine areas. Among
the thresholding techniques, band ratios, vegetation indices,
density, and biomass are commonly used (Richards, 2013),
whereas for supervised classification, spectral angle mapper
and maximum likelihood classifications are more conventional
approaches (Schroeder et al., 2019). Regarding classification,
ground-truth data are used for supervised classification, whereas
such information is not utilized for unsupervised classification.
For both classification types, the results need to be validated
with ground-truth data. Despite its simplicity, one of the
disadvantages of supervised as well as the unsupervised
classification is that it results in errors due to digital noise and
these must be removed carefully (Schroeder et al., 2019). Unlike
classification methods, the image threshold is determined based
on the ground-truth data or a validation is performed to check
the effectiveness of the threshold.

Many machine learning-based studies applying aerial or
remote sensing imagery rely on the greenness of the imagery
to map green tides. Although this technique is effective, some
areas of the bloom could likely be underestimated, as the
technique cannot easily delineate the bloom in its entirety.
This unreliability results as the technique does not account for
the spectral information available in the near-infrared (NIR)
region where plants exhibit the majority of the photoactivity
such as reflection (Tucker and Sellers, 1986). The Normalized
Difference Vegetation Index (NDVI) is a proxy for vegetation
health and greenness, and its value ranges from −1 to 1, where
higher value corresponds to the healthy vegetation and lower
values correspond to the lack of vegetation (D’Odorico et al.,
2013; Ke et al., 2015; Zhu and Liu, 2015; Zhang H. K. et al.,
2018). Since the NDVI technique uses the NIR bands, which
are not visible to the naked eyes, it can detect the signature
of vegetation that can go undetected when only visible green
bands are used. Although there are numerous other vegetation
indices (Silleos et al., 2006; Bannari et al., 2009; Xue and Su, 2017)
used, including Enhanced Vegetation Index [EVI, primarily
for Moderate Resolution Imaging Spectroradiometer (MODIS)],

Frontiers in Marine Science | www.frontiersin.org 3 April 2021 | Volume 8 | Article 633128

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-633128 April 7, 2021 Time: 12:43 # 4

Karki et al. Earth Observation for Mapping Blooms

Maximum Chlorophyll Index [MCI, primarily for MEdium
Resolution Imaging Spectrometer (MERIS)], and Floating Algae
Index (FAI), NDVI was employed in the present study primarily
because it incorporates the visible and NIR bands at 10 m
resolution which are available in Sentinel-2. Additionally, indices
developed for detecting vegetation or chlorophyll in aquatic
conditions such as FAI and MCI are not applicable in the current
context as macroalgal blooms are being mapped on tidal flats.
Other studies (Siddiqui and Zaidi, 2016; Siddiqui et al., 2019;
Taddia et al., 2019) have used NDVI and similar vegetation
indices for mapping seaweed, but these studies mainly focused
on seaweed immersed in the water. For the studies involving
seaweed species in water, data sets from ocean color sensors
have been used to obtain estimates of chlorophyll present in the
water (Gower et al., 2006, 2008). Considering the size of the
estuaries and the need to map these blooms at a higher spatial
resolution, ocean color sensor-based techniques are not relevant
to many estuaries globally. Recent studies have shown that NDVI
can be successfully used for mapping biomass and density of
intertidal macroalgae (Conser and Shanks, 2019; Praeger et al.,
2020; Salarux and Kaewplang, 2020).

The assessments of the algal blooms are usually accomplished
by comparing spatial coverage, but biomass can provide greater
insights about the severity of the blooms (Scanlan et al., 2007;
Rossi et al., 2011; Xiao et al., 2019). Furthermore, biomass results
are more helpful for allocating resources and adopting mitigation
measures. Despite the usefulness of biomass mapping, there are
minimal studies that focus on mapping biomass using remote
sensing data sets (Hu et al., 2017; Xiao et al., 2017, 2019). Most
of these studies relied on reflectance computed in the laboratory
environment in order to develop the biomass model. Those
models were later used to generate biomass using the data from
the MODIS optical sensor. Ocean color sensors such as MODIS
are ineffective in mapping bloom patches that are smaller than
a few hundred meters in size due to their coarse resolution of
500 m (Karki et al., 2018). Also, considering the spatial extent of
the estuarine areas, it is essential to use remote sensing data with
greater spatial resolution that can discriminate between various
magnitudes of biomass on the tidal flats.

In addition to optical sensors, application of radar, for
example, Advanced Land Observing Satellite-1 (ALOS) PALSAR
for biomass estimation, at larger scales such as in forestry is
common (Jha et al., 2006; Le Toan et al., 2011; Hame et al.,
2013); however, its application can be explored at a finer scale for
algal biomass estimation. In recent years, there have been many
successful applications of Sentinel-1 technologies for biomass
monitoring (Ndikumana et al., 2018; Periasamy, 2018; Crabbe
et al., 2019) including those combining radar and optical data sets
(Chang and Shoshany, 2016; Laurin et al., 2018; Navarro et al.,
2019; Wang et al., 2019) or using radar for bloom forming Ulva
species (Geng et al., 2020). The application of machine learning
in the field of macroalgal blooms is increasing as demonstrated
by recent studies (Zavalas et al., 2014; Kotta et al., 2018; Qiu et al.,
2018; Liang et al., 2019; Kim et al., 2020).

Although the application of NDVI is conventional, the present
study aims to optimize the benefit of NDVI combined with
the application of radar and artificial neural networks (ANN)

to predict the biomass of Ulva blooms. The benefit ANN
offers over the traditional linear regression-type approach is the
ability to model non-linear relationships (Huang, 2009; Karlaftis
and Vlahogianni, 2011). An ANN offers the potential to deal
with a large number of training samples and model complex
relationships taking advantage of multiple input variables
(Bourquin et al., 1998). Unlike other models, ANN offers the
scope for future additional optimization, by the inclusion of
more samples which in turn increases the robustness (Alwosheel
et al., 2018). Therefore, the addition of more samples and the
consideration of further variables provide a learning opportunity
to the ANN model which improves predictability over time
(Nadikattu, 2017). These neural networks when adequately
trained can model the natural environment making them suitable
to big-data applications such as remote sensing. Due to these
scalable and expandable qualities, the ANN-based technique
was adopted in the current study. Despite numerous benefits,
there are some drawbacks of ANN which can be considered
a “black box” because of its complex algorithms (Dayhoff and
DeLeo, 2001; Zhang Z. et al., 2018). In addition, machine
learning techniques require a comparatively large number of
training samples, which may be difficult for smaller scale
studies. More importantly, the requirement of robust computing
and programming platforms frequently discourages quick and
easy implementation.

The primary goal of the current study was to evaluate remote
sensing as a supplementary tool for the monitoring of macroalgal
blooms in Irish estuaries, where the presence of higher cloud
coverage places an additional constraint. In this study, macroalgal
bloom mapping based on satellite imagery was compared with
in situ mapping for ground-truthing and validation purposes.
The potential of machine learning methodologies was explored
to map the biomass distribution since the higher resolution of the
newer sensors, such as Sentinel-2 with 5-day revisit time and 10 m
spatial resolution, accompanied by the greater size of the data,
demands robust computing resources. The integration of these
approaches in EO can take advantage of the recent technological
advances in the field of data science and artificial intelligence
(Ali et al., 2015). To address this challenge, the potential of
an ANN was explored using the information extracted from
Sentinel-1 radar backscatter and Sentinel-2 optical reflectance.
The historical biomass data collected from field surveys were
combined with the data obtained from the EO to develop
the biomass model.

MATERIALS AND METHODS

Study Area
The current research was conducted on eight estuarine areas
most affected by macroalgal blooms across the Republic of
Ireland (Figure 1): (a) Clonakilty, Co. Cork (3,465,900 m2); (b)
Courtmacsherry, Co. Cork (4,471,200 m2); (c) Lower Blackwater
Estuary, Co. Waterford (2,873,700 m2); (d) Dungarvan, Co.
Waterford (12,399,300 m2); (e) Bannow Bay, Co. Wexford
(9,848,700 m2); (f) Tolka, Co. Dublin (1,135,917 m2); (g)
Malahide, Co. Dublin (4,075,200 m2); and (h) Rogerstown, Co.
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FIGURE 1 | Map of Ireland showing eight estuarine areas considered in this study with their ecological status based on the study conducted from 2013 to 2018
(EPA, 2019).

Dublin (4,488,300 m2). These areas show a moderate, poor, or
bad ecological status as assessed for the WFD, parameters driving
status included loss of seagrass meadows, general physico-
chemical properties, or the development of large macroalgal
blooms (EPA, 20191). Although there were different numbers of
estuaries in each category (moderate: 4; poor: 3; and bad: 1),
standard field surveying techniques were conducted regardless
of their status. Consistent with the field protocol, identical EO
mapping techniques were also applied. It was important to
include a varied range of ecological status conditions in this study
to make sure that the proposed technique for mapping blooms
was not limited to a narrow set of environmental conditions.

In this study, seaweed blooms resembling terrestrial
vegetation present in the estuaries and tidal flats, excluding
the salt marshes, were mapped during the low tides. These algal
patches must be mapped during the low tide condition when
there is no water above them. It is crucial to note that estuaries in
Ireland are intertidal in nature, and blooms present in the tidal
flat region may not have water above them except during high
tide conditions. In six of the eight sampling locations, seagrass
meadows were absent, or their presence was negligible (i.e.,

1www.catchments.ie

Clonakilty), and only Bannow Bay had conspicuous seagrass
meadows present. Bannow Bay primarily includes intertidal
zones with predominant macroalgal growth, and the distinction
between seagrasses and Ulva was not conducted because of
the interspersed, or sometimes negligible, growth of seagrasses
among the macroalgal blooms. Apart from the practical reasons,
green algae and seagrasses are difficult to separate from each
other at the current spectral and spatial signature (Kutser
et al., 2020). Since the discrimination between seagrasses and
macroalgae is not possible with Sentinel-2, the study aims to
develop a methodology so that field validation can be performed
where substantial levels of macroalgal growth occur and any
potential false positive incidences due to the presence of
seagrasses can be verified. This is an example of field monitoring
and EO complementing each other, reducing logistical and
human resource costs, and enhancing environmental quality
assessment. Seagrasses in Bannow Bay are routinely monitored
and mapped as a part of obligations under the WFD and the data
confirm no risk of false observations from the EO mapping.

Field Survey
In Ireland, as well as in other cold-temperate regions,
the maximum development or peak of macroalgal
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blooms occurs during the summer (Jeffrey et al., 1995;
Bermejo et al., 2019a, 2020). For this reason, the monitoring of
the estuaries and the field sampling were concentrated through
late June to early October. The current study focused on blooms
from 2010 to 2018, because of the lack of overlap between field
surveys and Landsat acquisitions prior to that date.

Bloom extension and biomass abundance were obtained from
the WFD surveys conducted by the EPA to assess the ecological
status of opportunistic algae blooms on the dates shown in
Table 1. The table shows the dates and locations for which
both field spatial coverage and biomass data sets were available
and were collected as a part of the WFD monitoring. Since the
WFD method primarily focuses on surveying of algal mats that
are mostly attached, spatial coverage and algal biomass were
assessed in situ. The outer edges of the algal accumulations were
mapped at low tide using a mapping grade Global Positioning
System (GPS) unit with accuracy of a meter. A light hovercraft
was used in areas where the sediment was too soft to allow
safe access or where the algal beds were too large to allow safe
mapping during a single tidal cycle (Wilkes et al., 2017). A series
of transects were taken through each patch and haphazardly
distributed 0.5 m2 quadrants were taken along each transect,
and their GPS locations were recorded. The percentage cover
and algal biomass in each quadrant were recorded. Biomass
from each quadrant was collected, washed, and rinsed in fresh
seawater to remove sand and debris, squeezed dry, and the weight
recorded as g/m2 wet weight. The data were compiled into five
sub-metrics (i.e., total percentage cover, total patch size as a
percentage of available intertidal habitat, average biomass on the
intertidal area, average biomass in affected area, and percentage
of quadrants with algae entrained into sediments) to provide a
WFD assessment for the estuaries (Scanlan et al., 2007; Wan et al.,
2017). To meet the requirement for sufficient training data for
model development, additional data collected as a part of the Sea-
MAT Project (Bermejo et al., 2019b), not shown in Table 1, were
used. This biomass abundance (g/m2) data, collected between

TABLE 1 | Dates of the field investigation and corresponding source of EO data
sets: Landsat-5 TM (L5), Landsat-8 OLI (L8), or Sentinel-2 MSI (S2) missions.

2010 2013 2014 2015 2016 2017 2018

1. 17-Sep
L8:4-Oct

16 Sept
L8: 5-Sep

10-Jul
S2:17-Jul

21-Sep
S2:5-Sep

2. 19-Sep
L8:4-Oct

15-Sep
L8: 5-Sep

11-Jul
S2:17-Jul

21-Sep
S2:5-Sep

3. 5-Jul
L5:19-Jun

18-Sep
L8:4-Oct

11-Jul
S2:17-Jul

4. 27-Sep
S2:10-Oct

5. 2-Oct
L8:11-Oct

27-Sep
S2:10-Oct

6. 7-Jul
L8:19-Jul

26-Sep
S2:10-Oct

7. 25-Jun
L8:11-Jul

15-Jul
L8:12-Jun

6-Jul
S2:18-Jul

12-Jul
S2:25-Jun

8. 5-Jul
S2:18-Jul

11-Jul
S2:28-Jun

The dates of field survey are italicized, and the serial number on the left column
corresponds to the locations shown in Figure 1.

June 2016 and August 2017 following a similar methodology,
were exclusively used for ANN training and validation.

Earth Observation Mapping of the
Spatial Coverage
The mapping of macroalgal blooms using satellite imagery
comprises several steps starting from data download to the
generation of the map (Figure 2). The study utilizes the EO data
sets from the Sentinel-2 and Landsat (5 and 8) missions to acquire
the temporal coverage from 2010 to 2018. The Landsat mission
from the National Aeronautics and Space Administration
(NASA) has been operational since 1972, although the availability
of free and open-source data is a more recent practice that started
in 2008 (Zhu et al., 2019). To get better temporal coverage from
2010, data sets from Landsat-5 Thematic Mapper (TM; data
availability:1984–2012) and Landsat-8 Operational Land Imager
(OLI; data availability: 2013–2018) were used. The data sets
are freely available from the United States Geological Survey
(USGS)’s Earth Explorer2.

Both, Landsat-5 and Landsat-8 missions provide the images
with a swath width of 185 km and a temporal resolution
of 16 days (USGS, 2020). These missions are identical from
the application and data processing point of view, especially
for the bands being considered for this study. Landsat bands
in the visible region (red, green, and blue) and NIR are
available at 30 × 30 m resolution. Unlike Landsat missions,
Sentinel-2 Multispectral Instrument (MSI), under European
Space Agency (ESA)’s Copernicus Program, is the newest EO
mission and provides the acquisitions since 2015. It consists of the
constellation of Sentinel-2A and 2B MSI sensors with a combined
revisit time of 5 days at the equator and swath coverage of 290 km
(ESA, 2019). The bands required for natural color (red, green,
and blue) imagery and vegetation mapping (red and NIR) are
available at 10 × 10 m resolution. These data sets are available
freely from ESA’s Sentinel Hub3.

Data Acquisition
The identification of the dates was based on the availability of
the field survey data collected from 2010 to 2018 as a part of
the WFD monitoring program. In response to the number of
field data accompanied by the need to find matching EO scenes
with low tide and cloud-free conditions, images acquired either
before or after the field surveys were indiscriminately considered
for the study. This is considered the accepted practice in the
field of remote sensing and is unlikely to affect the outcome
of the study for mapping Ulva blooms. For each location, the
archival Sentinel-2 data were screened for cloud-free scenes
within two and half weeks of the field monitoring program under
conditions of low tide. In the absence of Sentinel-2 MSI scenes
(10 m resolution, 2015–2018), Landsat-8 OLI (30 m resolution,
2013–2018) scenes were used. For scenes prior to 2013 (2010–
2012), Landsat-5 TM (30 m resolution; 1984–2012) images were
used. Table 1 provides the detailed information about the field
survey and corresponding source of EO data sets for each of

2https://earthexplorer.usgs.gov/
3https://scihub.copernicus.eu/
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FIGURE 2 | The workflow developed for mapping blooms using the NDVI delineation technique.

the eight locations. Considering the small number of historical
WFD monitoring data with associated geospatial information
followed by the difficulty in finding corresponding EO scenes,
data from 2010 were selected despite the fact that there were no
matching scenes for the two subsequent years (2011 and 2012).
Additionally, 2010 is the only year for which Landsat-5 data
were used, which is identical to Landsat-8 from the application
point of view. Thus, the inclusion of 2010 despite a gap of two
years and the usage of Landsat-5 was important for this study.
Sentinel-2 Level 2A (atmospheric corrected) products covering
the areas under consideration were identified and downloaded
from ESA’s Sentinel Hub website. Similarly, Level 2 Landsat-5 TM
and Landsat-8 OLI products were downloaded from the USGS
Earth Explorer’s website.

Pre-processing
The second step involved pre-processing of the scene in order
to reduce the size of the files to allow quick processing in freely
available Sentinel Application Platform (SNAP) software from
ESA. In the case of Sentinel-2, pre-processing was accomplished
as a first step to resize the entire image to the resolution of
10 m bands (either blue, green, red, or NIR). This step helped to
synchronize all the coarser bands (20 and 60 m) to a resolution
of 10 m. This is the most essential step before doing spatial
and spectral sub-setting since it helps to significantly reduce the
computing time. After resampling, each scene was resized and
clipped to the extent of each location under investigation. During
the same step, the spectral sub-setting was completed to retain
the specific bands required for further processing (blue, green,
red, and NIR). In the case of Landsat-5 and Landsat-8, the scene
was resampled to the extent of 30 m band prior to spatial and
spectral sub-setting.

NDVI Calculation
Although several remote sensing indices are in use for
vegetation mapping, NDVI is the most widely used index
(Xue and Su, 2017). The method used in this study is based on
the NDVI for mapping and delineating the bloom. It utilizes
the characteristic increased reflectance in the NIR region and
decreased reflectance in the red regions of the electromagnetic
spectrum exhibited by the vegetation (Jensen, 1986; Tucker and
Sellers, 1986). The NDVI is calculated using Eq. 1.

NDVI =
(NIR− Red)

(NIR+ Red)
(1)

The next step was to compute NDVI using red and NIR bands
in SNAP software. During the band specification, corresponding
bands were identified for Sentinel-2, Landsat-8, and Landsat-5.
All the processing after this step was done using ArcGIS software
and Python 2.7. Since NDVI computation involves the uses of
NIR band, it can overestimate the bloom coverage by including
microphytobenthos present in the sediment that contributes to
the primary production in an estuarine environment (Launeau
et al., 2018). To prevent this risk, the results from NDVI
needed to be verified with field data. One important advantage
of using NDVI was its ability to detect live vegetation, due
to the consideration of NIR reflectance exhibited only by
photosynthetically active plants.

Generation of Algal Bloom Map
The Corine (Coordination of Information on the Environment)
land cover data set4 was used to define area of interest (AOI,
i.e., intertidal mudflats) for each location. Following Corine
land cover classification, the classes of interest corresponded

4https://www.epa.ie/pubs/data/corinedata/
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with the tidal flats (4.2.3) and estuaries (5.2.2) labels. This
facilitated the removal of terrestrial vegetation and saltmarshes
from the consideration.

The visual inspection was done to determine the threshold
of the NDVI values that corresponded with the bloom-forming
seaweed in the natural color composite. In most cases, NDVI
values greater than 0.15 and 0.20 for Sentinel-2 and Landsat
images, respectively, represented Ulva blooms. For each location,
the vegetation pixels were segregated after determining the
threshold. This technique was able to segregate bloom patches
bigger than a few meters.

Manual verification, subjective judgment, and refinements
are essential steps of the mapping workflow to assure that the
bloom pixels are represented correctly. Spatial delineation of the
macroalgal blooms using the NDVI technique was the initial
step, and subsequently the computation of biomass relied on the
spatial extent outlined. Correct spatial delineation ensured that
healthy Ulva tissue, as opposed to decomposing tissue, was only
considered. In specific locations, it was necessary to eliminate
areas which corresponded to terrestrial vegetation. Due to the
coarse resolution of Corine land cover data sets, a few areas also
included artificial structures and salt marshes. The minimum
mapping area for Corine land cover data sets is 50,000 m2 for land
cover change and 100 m for linear units. For features smaller than
these minimum mapping units, a generalized class is reported in
the Corine database. Because of such boundary generalizations
for small features, these areas were carefully clipped out from
the AOI polygons. The final step involved the generation of the
vector and raster outline of the algal blooms for all locations. The
area of the bloom was computed, and the percentage coverage
was calculated by taking into account the AOI of each site under
consideration using the following Eq. 2.

Percentage Cover

=
Area delineated by NDVI technique in the AOI

AOI
× 100 (2)

Validation and Statistical Analysis
To test the comparability and consistency of macroalgal blooms
mapping using satellite imagery and field surveys, and to
identify possible disagreement between methodologies, Pearson
correlation analyses and paired t-tests (Xu M. et al., 2017) and
Cohen’s kappa analyses were conducted. The limited number
of samples for Landsat show marginal significance compared to
other groups, whereas Sentinel with native bands shows higher
significance. Similarly, the root-mean-square error (RMSE) was
calculated to examine the error where lower value indicated
better estimates. Similarly, to assess the influence of the temporal
gaps between field surveys and satellite images, the correlation
between relative mismatches and the time lapse between
samplings was evaluated. All statistical analyses were performed
using Minitab software, ArcGIS, and Python packages. When
necessary Shapiro–Wilks and Levene’s tests were used to ensure
compliance with normality and homoscedasticity assumptions.
In all statistical analysis, significance was set at 5% risk error.

The time gap between the EO data acquisition and field
survey varied from same day to a maximum of 18 days
(+/−) with an average of 12 days for 22 pairs of observations.
Out of those 22 observations, 12 were Sentinel-2 and 10
were Landsat acquisitions, as we primarily focused on finding
Sentinel scenes and selected Landsat only when the former
was not available. Since it was not possible to obtain both
Sentinel and Landsat scenes for each location for the same date
during the scene selection, more direct comparison between
the influences of resolutions on identical conditions was not
possible. To address this, the Sentinel bands were resampled
to 30 m in order to compare the findings from the 10 m
Sentinel-2 bands. This helped to compare the overall effects of
resolution on the estimated coverage at the same location with
fine and coarse pixels on the same day. Further, the upscaling
of the Sentinel bands to 30 m facilitated the comparison with
original Landsat bands.

Computation of Algal Biomass Using
Machine Learning
Building upon the spatial coverage extracted using the NDVI
delineation approach, an ANN model was developed to quantify
the biomass distribution in the estuarine area. Sentinel-1
Synthetic Aperture Radar (SAR) and Sentinel-2 MSI were used
to develop the ANN model. The in situ biomass samples (point
locations in g/m2) collected as a part of WFD monitoring
program and those obtained under Sea-MAT project (Bermejo
et al., 2019b) were compiled as a response variable for the
model. The entire biomass computation process can be broken
down into data acquisition and processing, identification of
determining variables, model development, and application, as
shown in Figure 3.

Data Acquisition and Processing
Sentinel-2 scenes acquired for mapping spatial coverage of
Ulva blooms were also used for biomass calculation. In
addition to NDVI, two more products, percentages of green
and red reflectance, were calculated using visible and NIR
bands. Altogether 11 Sentinel-2 scenes corresponding to biomass
surveys were used for computing optical variables. Apart from
optical data, Sentinel-1 SAR scenes, acquired from ESA’s site,
provide the radar information in C-band at a spatial resolution
of around 10 m. Sentinel-1 images were acquired in either
ascending or descending modes covering the study area. The
standard radar data processing chain (Small and Schubert,
2008; Small, 2011; Filipponi, 2019; Veci, 2019) were followed
using ESA’s Sentinel Toolbox. The processing steps include:(i)
radiometric calibration and calculation of radar backscatter;
(ii) speckle filtering; and (iii) terrain flattening and geometric
correction. The final product of the processing was radar
backscatter in decibels (Raney et al., 1994). Sentinel-1 SAR is
dual polarized, capable of HH/HV and VH/VV acquisition, but
VH/VV is the default mode. Polarization can impact on the
results, and cross-polarized (VH) data were found to provide
better results. Altogether 16 radar scenes corresponding to the
biomass field survey data were processed which were acquired
within 5 days of the data collection. In addition to satellite

Frontiers in Marine Science | www.frontiersin.org 8 April 2021 | Volume 8 | Article 633128

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-633128 April 7, 2021 Time: 12:43 # 9

Karki et al. Earth Observation for Mapping Blooms

FIGURE 3 | The workflow developed for computing biomass using ANN.

derived variables at the resolution of around 10 m, biomass
data collected at the field resolution of 0.5 via field survey were
used in the study.

Identification of Determining Variables
The independent variables were identified, which would explain
the variability of biomass in the study area. At first, all
the potential variables that could be related to biomass
were considered. Among such variables, NDVI, percentage
reflectance in green, red, and infrared wavelengths were selected
as determining variables. Similarly, radar backscatter was
considered as one of the determining variables since it is the
measure of surface roughness. The test of significance and
redundancy was carried out using variance inflation factor (VIF)
analysis (O’Brien, 2007) through correlation before selecting the
independent variables, and only four variables were shortlisted
for inclusion in the model training because these were found
significant as well as non-redundant. Inclusion of these additional
variables for their non-linear contribution is expected to prevent
the potential saturation of NDVI at higher biomass values (Huete
et al., 2002; Garroutte et al., 2016; Xiao et al., 2017).

Development of the Model
An ANN models the relationship between the dependent and
independent variables with the help of training and validation
data. The model consists of multiple inputs, activation functions,
hidden layers, and an output which are connected via artificial

neurons and transmit information through structured layers
(Dayhoff and DeLeo, 2001). These interconnected neurons
work exactly like the neurons present in the nervous system
of organisms where it learns the relationship among input
variables through multiple iterations or epochs (Zurada, 1992;
Agatonovic-Kustrin and Beresford, 2000; Hu et al., 2018). An
ANN consists of different combinations of input variables with
associated empirical weights and bias terms (Huang, 2009).
Backpropagation is one of the techniques where parameters
such as the number of inputs, bias terms, and weights are
adjusted in forward and backward fashion until the minimum
error is achieved (Rumelhart et al., 1986; Aggarwal, 2018; Hu
et al., 2018). The model training and, hence hyperparameter
tuning, is attained in several iterations until a stable solution
is achieved. With each iteration of the ANN model, these
configurations are tuned so that the structured layers of neurons
can model the expected output (Bardenet et al., 2013). During
the ANN development, a small number of validation data
sets are set aside to prevent overfitting (Shahin et al., 2005;
Piotrowski and Napiorkowski, 2013). This step assures that
the model is generalized enough, and its robustness does not
degrade outside of the training samples. Thus, during the
model training, the samples should be representative so that the
neurons can learn to model the complex relationships adequately
and appropriately.

The ANN model was developed using the total of 346 biomass
samples where the magnitude of biomass (g/m2) was the response
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variable, and remaining variables (NDVI, percentage of green
reflectance, percentage of red reflectance, and radar backscatter)
were used as determining variables. Out of the total samples,
20% of the data points were used as validation data, where these
prevent the model from overfitting due to excessive training. The
hyperparameters, such as the number of hidden layers and the
number of iterations to achieve a stable solution, were determined
based on the error statistics reported by the model by using
backpropagation-based learning algorithms (Huang, 2009). The
fully trained ANN model was achieved with five hidden neurons
when the number of epochs reached 50. The learning process
was continued until the model performance plateaued where the
error was minimal for both validation (20%) as well as training
(80%) data sets. The entire process was accomplished using
Google’s TensorFlow (Abadi et al., 2016), a free and open-source
application using Python programming language. The input data
preparation was done using ArcGIS, where a table consisting of
all input variables was generated.

Application of the Model
After the development of the model, the ANN model was applied
to generate the biomass values using the input variables. In
order to apply the model, the input data sets were extracted and
compiled in the form of a table. The TensorFlow generated results
were later converted to geographic information system (GIS)
raster for mapping and further analysis. The biomass quantity
can be predicted for any area as long as input data sets are
available for any area.

RESULTS

Spatial Coverage of the Bloom
The extension of the macroalgal blooms from field surveys
ranged between 213,100 and 5,425,900 m2 for Lower Blackwater
Estuary (2017) and Tolka (2017), respectively. There was a total
of 22 EO estimates with corresponding field survey data, some of
which are shown in Figure 4. A significant correlation between
EO estimate and survey measurements was observed, which was
independent of the satellite missions used (p-values < 0.01).
All the correlation analyses yielded coefficients of determination
close to 1 (between 0.93 and 0.98) and a good fit between the
observations (Figure 5). The spatial coverages from EO show
more detailed delineation than those mapped on the ground since
the field campaign was more concentrated on the predominant
and accessible regions of the Ulva blooms. The scatter plots for
all the observations made for eight estuaries using Sentinel-2 and
Landsat are presented in Figure 5 together with R2 value, slope,
and intercept for each plot.

Although resampled Sentinel-2 bands, upscaled to 30 m, are
a derivative of bands acquired originally at 10 m resolution, it
provided a similar level of performance in terms of delineation
of the green algal blooms and one-to-one correspondence with
the field data. The EO data sets show a slight overestimation
compared with the field data, as shown in Figure 5. This
overestimation is slightly higher in Figures 5B,C which
corresponds to Sentinel-2 original and resampled products,
respectively. For each scatter plot, the equation of the trend
line shows the magnitude of the bias, and the slope of the

FIGURE 4 | Eight locations showing selected sites with coverages from EO and the corresponding field surveys. Scale bar shows 1 km in all the locations.
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FIGURE 5 | Scatterplots showing the comparison between coverage computed using the EO and coverage obtained using the field survey for four groups based on
the resolutions of the EO data sets: (A) resampled Sentinel-2 30 m and Landsat 30 m, (B) Sentinel-2 10 m, (C) resampled Sentinel-2 30 m, and (D) Landsat 30 m.
The equation of the trend line, the associated R2 values have been shown for each plot. The 45◦ line with 1:1 correspondence between EO and field data has been
shown as a dotted line for reference.

trend line shows the level of estimation (over or under)
between EO and field survey. Comparing the rate of over-
and underestimation, Landsat seems to be consistent, although
exhibiting a slight overestimation as indicated by the upward
shift of the trend line compared to the 1:1 dotted line. Sentinel-2,
in contrast, shows overestimation for lower magnitudes and a
slight underestimation for higher magnitudes of coverage. These
under- and overestimations of Sentinel-2 and Landsat imagery
seem to be compensating each other on the combined scatter plot
in Figure 5A. The slope of the regression lines (Figure 5) was
close to 1 for all correlation analyses, and the results of the paired
t-test (Figure 6 and Table 2) suggest no methodological bias. The
p-value for all groups of observations shows values higher than
0.05, as shown in Table 2. Overall, there was no bias as can be
seen from Figure 5 and suggested by the paired t-test.

Regarding the error statistics, the result of the t-test shows
that the RMSE is lowest for Landsat, followed by the RMSE
for the combination of resampled Sentinel-2 and native Landsat
bands at 30 m. The Pearson correlation showed the correlation
between EO estimates and field measurements, where Landsat
shows the best results followed by the combination of Sentinel-
2 and Landsat observations. Based on the RMSE and Pearson
correlation values, the Landsat appears to have performed better
than Sentinel with finer resolution. Nevertheless, the low number

of observations for Landsat may not statistically prove that
it is performing better than the Sentinel. Overall, the results
show that native Sentinel-2 bands perform better than resampled
bands, as evidenced by lower RMSE. In addition, the resampled
Sentinel-2 still managed to provide better results and did not offer
significantly higher error than the native bands.

The error analysis was done by comparing the distribution of
the residuals computed between the EO estimates and the field
survey data. After these inter-comparisons of the residuals, it
is equally important to see if there was any notable correlation
between the difference/discrepancies in percent coverage (EO
estimates and field measurements) with the corresponding time
lag between them. Thus, the relationship between the differences
in percent coverage was analyzed against the time lags. Figure 6
shows the differences in bloom coverage estimated using EO and
field surveys. From the magnitude of the residuals, it is evident
that the differences cannot be considered different to zero in all
the cases except marginal difference in the case of Landsat. With
very few observations for less than 1 week and more than 2 weeks,
it was difficult to draw any conclusion about the magnitude of the
effect due to the time gap. Figure 7 shows the number of days
between those observations and the absolute difference between
the percentage coverages. The individual breakdown of Cohen’s
kappa for each Sentinel-2 and Landsat observation is indicated
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FIGURE 6 | The box plots showing the residuals computed between the EO estimates and field coverages. The upper and lower bounds of the box represent the
first and third quartiles, whereas the dotted line represents the median. The long horizontal line shows the zero value. The whisker shows the range of the residual
data.

TABLE 2 | Results of the two-sample paired t-test for EO estimates and field
measurements.

Number of
Samples

RMSE
value

P-value (paired, two
sample for means)

Pearson
correlation

Sentinel-2 (30)
+Landsat (30)

22 0.71 0.35 0.97

Sentinel-2 (10 m) 12 0.93 0.99 0.96

Sentinel-2 (30 m) 12 0.96 0.92 0.96

Landsat (30 m) 10 0.36 0.06 0.99

by its label and color code. This figure aids visualization of the
distribution of data in relation to Cohen’s kappa which highlights
the measure of agreement between field and EO estimations.
Cohen’s kappa value also provides important information about
changes in the position of the bloom or the degree of spatial
agreement between EO and field data. Most of the observations
clustered around 10–13 days without showing any trend with
the difference in the percentage coverage or Cohen’s kappa
(Figure 7), and the Pearson correlation coefficient indicated no
correlation (Pearson’s r < 0.01) between them.

Biomass Computation of the Algal
Blooms
The ANN model was developed by using NDVI, percentages
of green and red reflectance, and radar backscatter to compute

the biomass in g/m2. Only the non-redundant and significant
variables were used in the ANN model development based on the
result from the redundancy test using VIF (O’Brien, 2007) and
correlation analysis. Figure 8 shows the scatter plots of biomass
with each of the determining variables where the correlation with
red reflectance was highest, followed by NDVI, green reflectance,
and the radar backscatter. The predicted result was compared
with the biomass data measured from the field survey with RMSE
value of 471.70 and adjusted R2 of 0.74, as shown in Figure 8E.

The ANN model was used to compute the biomass images for
several estuarine areas. The biomass image shows the distribution
of biomass blooms within the areas delineated by the spatial
coverage mapping technique based on NDVI. Figure 9 shows
the biomass distribution where both the EO scenes acquisition
and the field survey were conducted in the summer of 2016
and 2018 for Clonakilty (Figure 9A) and Courtmacsherry
(Figure 9B), respectively. Similarly, the computed biomasses
for Malahide and Tolka for the summer of 2017 are shown in
Figures 9C,D, respectively.

DISCUSSION

Spatial Coverage of the Bloom
The current study used the visible and NIR bands from the
optical sensors and used the NDVI delineation technique along
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FIGURE 7 | The scatter plot for the time gap between EO and field surveys versus the difference in percentage coverage. The number next to each observation and
the intensity of color represent Cohen’s kappa coefficient and its magnitude.

the tidal flats. Overall, the NDVI technique showed a fine-scale
delineation of blooms than those measured in the field. The
reason for a generally better delineation for the EO estimation
could be due to its sensitivity to even small algal patches
including microphytobenthos present in the sediment (Launeau
et al., 2018). It seems more evident on Sentinel-2 than Landsat,
most likely because of its higher spatial resolution. In contrast,
the field survey is generally restricted to the main areas of
the intertidal environment that can be accessed, as shown in
Figure 4. Considering the increasing average monthly rainfall
in Ireland (80–130 mm; Walsh, 2012) and associated cloud
coverage, it is difficult to limit the temporal gaps to a couple of
days or exclusively select scenes either before or after the field
surveys. Despite this, a good correlation was obtained followed
by a negligible bias and a slope close to one between satellite
estimates and field survey results, as during the peak bloom
phase (from June to September), the bloom extension might
remain more or less constant (relative standard deviation 13–
18%; Monagail et al., 2021, unpublished data).

Despite these satisfactory results, there may be small variations
in the estimates due to the growth of the bloom during the
time between the satellite overpass and the field surveys. This
may explain relatively lower Cohen’s Kappa in few locations
(around 0.4, Figure 7). Similarly, the movement of the large

quantities of seaweed biomass because of wind and tidal
currents (Gower et al., 2008; Qiao et al., 2009; Cui et al.,
2012) has not been considered in this study because algal mats
producing blooms in Irish estuaries are mostly attached to
the substrate. Additionally, variation in NDVI can arise from
the different stages of macroalgal blooms such as healthy and
photosynthetically active versus decomposing macroalgal tissue
that can give rise to slightly different measures of NDVI leading
to small variations in the spatial coverage. The NDVI-based
technique eliminates the need to filter out dead or decomposed
vegetation mapped in contrast to other indices that rely entirely
on the spectral reflectance on the visible part of the spectrum
such as red, green, or blue regions. Due to the seasonal
growth of the macroalgae, the rate of photosynthesis varies
with time, thus the use of NDVI can correctly account for the
corresponding variation in electromagnetic signals indicative of
vegetation health (Erener, 2011; Turvey and Mclaurin, 2012).
This is particularly important in our case because macroalgal
blooms may consist of algae at various states of life cycle
such as mature algal tissue or actively decomposing mass.
Furthermore, minor discrepancies may have resulted from
the methodologies currently being adopted during the field
measurements including human error and sampling bias. These
issues were unavoidable considering environmental constraints
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FIGURE 8 | Scatterplots showing the correlation between biomass data from field surveys and other determining variables: (A) NDVI, (B) green reflectance, (C) red
reflectance, and (D) radar backscatter. Scatterplot on the bottom (E) shows the field survey biomass data versus the predicted biomass from the ANN model.

such as high-cloud coverage, high-tide conditions, and field
limitations such as field safety and accessibility. Planning of
the field surveys around the satellite overpass can help avoid
inconsistencies due to daily changes in coverages (Carl et al.,
2014). Additionally, there could be some unavoidable errors in
the estimation due to the signal mixing that occurs when blooms
are present along a pixel boundary. Regardless of the sources
of error, our data showed an excellent fit when assessing bloom
coverage with very high R2 (0.94) value with average Kappa value

of 0.69 ± 0.13 suggesting a good agreement between field and
EO observation.

The above observations provide evidence that the mapping
results from 10 and 30 m resolutions did not differ significantly
at the current scale of monitoring of algal blooms. This
finding is especially helpful in an Irish context, where the
number of scenes is particularly limited by the cloud cover
as well as low-tide conditions. For areas with optimal weather
conditions, it offers the additional advantage of more frequent
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FIGURE 9 | Biomass distribution for four estuaries: (A) Clonakilty, (B) Courtmacsherry, (C) Malahide, and (D) Tolka. The field measured samples from the in situ
survey are shown as points. The dates of field survey and Sentinel-2 acquisitions are also shown.

monitoring. Taking into account the average monthly rainfall
of 80 mm even during the drier months (April–July) and
130 mm during the wetter months (October–January) (Walsh,
2012) in Ireland, it is important to note that rainfall and
cloud conditions are relatively higher here than in many
other countries. Amid these limitations, in the situation
where appropriate Sentinel-2 scenes are not available, Landsat
acquisitions could still be used for mapping the blooms in
these estuaries without greatly compromising the quality of the
results. In addition, data from the legacy Landsat acquisitions

or any other optical missions could be utilized to reconstruct
and analyze the trend of historical blooms in any area (e.g.,
Bermejo et al., 2020).

The results from the current study show the higher overall
effectiveness of the NDVI technique compared to similar findings
elsewhere (Cavanaugh et al., 2010; Siddiqui and Zaidi, 2016;
Siddiqui et al., 2019; Taddia et al., 2019). Intertidal green algae
and giant kelp were mapped using the Sentinel-2 imagery,
where only 66% of field survey locations showed the presence
of kelp within a distance of 300 m (Mora-Soto et al., 2020).
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A similar study (Fauzan et al., 2017) conducted using Sentinel-
2 for acquiring the percentage coverage of seagrass showed an
overall accuracy of 61% with a coefficient of determination of
0.51. Occasionally, the adopted technology was only limited
to the size of the study area (area > 10,000 m2; Mora-
Soto et al., 2020), whereas the current study could map the
bloom to the minimum extent of a few pixels using the NDVI
delineation technique. The greater effectiveness in the present
study can be explained by the combination of the adopted AOI
delineation technique and the greatly reduced biodiversity of
eutrophic mudflats which are mostly covered with Ulva alone.
This approach may be challenging to implement in other more
biodiverse intertidal areas.

Biomass Computation of the Algal
Blooms
The biomass showed a high level of correlation with the red
reflectance of the Ulva bloom (Figure 8C). This is expected
because of the increased reflectance of the plants in the visible
and NIR region (Jensen, 1986). Reflectance in the green region
of the electromagnetic spectrum also shows good correlation
with the algal biomass, like any green vegetation. The radar
indicates low levels of correlation, but the inclusion of the
backscatter slightly improved the model performance, probably
because of the non-linear contribution of radar that is considered
in ANN. The correlation with red reflectance was negative,
whereas it was positive with the rest of the variables. Inclusion
of NDVI, which is a quantitative measure of healthy vegetation,
ensured that only live and photosynthetically active algal tissue
was considered. This is the reason why the biomass model
was applied only in the area primarily delineated by the
NDVI technique.

The biomass predicted using the input variables was compared
with the biomass data collected from the field survey (Figure 8E).
There seems to be a higher level of correspondence between the
modeled and true value as exhibited by the R2 value (0.74) and
the low RMSE (471.70) considering the relatively small number of
training samples (number size: 346). Movement of bloom patches
due to tides, wind, positional error due to GPS, or the growth of
blooms during the time period between field surveys and satellite
acquisitions might be responsible for outliers in the scatterplot
which are not explained by the independent variables (i.e., 26%
unexplained by R2). With a greater number of iterations and the
addition of hidden layers, the R2 value could be increased further,
but that could lead to model overfitting, thereby reducing model
predictability (Zhang et al., 1998; Jin et al., 2004; Liu et al., 2008).
Thus, to preserve the model generalization, the model was trained
optimally with the help of error statistics reported during the
ANN development. The model training was stopped when the
model convergence was reached where the error was minimum
for both training and validation.

The distribution pattern of the biomass corresponds with
the point data collected during the field surveys. The range
of the observed and computed biomass also matches for all
the sites. Figure 9 shows the computed biomass for Clonakilty
(2016), Courtmacsherry (2018), Malahide (2017), and Tolka

(2017). The higher magnitude of biomass seems to be scattered
uniformly over the areas where point samples were collected in
Clonakilty. In contrast, higher biomass is concentrated mostly
in the areas where most of the point samples were taken in
case of Malahide which shows some level of sampling bias in
the adopted methodology. The biomass distribution in both
Courtmacsherry and Tolka show the uniform distribution and
good correspondence with the field survey data points as shown
in Figure 9. Although the results from the ANN are not optimal,
the model can be significantly improved with the inclusion of
more training samples. With the addition of more samples, the
robust point-to-point data calibration and validation exercise
could be accomplished in the field considering the biomass
estimation at 10 m resolution.

CONCLUSION

This work involves the validation of EO data-processing
techniques to develop a methodology for mapping spatial
distribution and biomass of estuarine and coastal macroalgal
blooms that can be easily implemented. The predicted results
were compared with previously collected historical field survey
data for ground-truthing the model outputs. The application
of EO data sets from Sentinel-2, Landsat-5, and Landsat-8 was
investigated to map seaweed blooms at eight different estuarine
locations covering moderate, poor, and bad ecological status
as designated by the WFD monitoring program. The study
combined EO imagery and field survey data from 2010 to
2018 to map green algae, mostly Ulva blooms. The percentage
coverage was computed and compared with the results from the
ground, where EO estimates showed a good correlation with the
corresponding field results which is very satisfactory for WFD
monitoring. Both Sentinel-2 and Landsat imagery provided better
estimates despite their different spatial resolutions. The findings
show that the resampled Sentinel-2 bands still provide results
close to the ones from the original bands.

An ANN model was developed using several determining
variables to compute the biomass in the areas already delineated
by the NDVI mapping technique. The results of the biomass
computed using the ANN show excellent correspondence with
the general distribution of the biomass survey results. The model
presents significant potential for improvement with the addition
of more data points. The current work presents the exploratory
efforts to investigate the use of machine learning and artificial
intelligence for remote sensing. The ANN model showed the
R2 value of 0.74 with an RMSE of 471.70. Therefore, this
study demonstrates that with the combination of remote sensing
derived variables, it is possible to delineate as well as quantify the
magnitude of the seaweed blooms.

Future work could involve planning of fieldwork intending
to study the influence of resolution on the estimation of
coverage. The sampling methodology should be improved to
reduce sampling bias and sampling coverage should be increased.
These improvements will help to account for variance in the
biomass currently not explained by the modeling. Preparation
of the fieldwork includes scheduling of the fieldwork during the
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satellite overpass time around cloud-free days to optimize the
number of scenes. This will help obtain more accurate estimates
by minimizing the temporal gap between scene acquisition and
field surveys. Additional biomass samples will be collected to
retrain the ANN model so that the error could be minimized,
and optimum performance could be achieved. The developed
technique is easily replicable, cost-effective, and has the potential
to be implemented as an effective monitoring tool because
of its low overhead and extensive geographical coverage. The
study has demonstrated that both the NDVI-based technique
to map spatial coverage of macroalgal blooms and the ANN-
based model to compute biomass have the potential to become an
effective complementary tool for monitoring macroalgal blooms
where the existing monitoring efforts can leverage the benefits
of EO data sets.
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