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A B S T R A C T   

Peatlands are important sites of ecosystem services, particularly as soil carbon stores, and are recognised in many 
international climate strategies. However, drained peatlands, which have been modified for industrial extraction 
or agriculture, are responsible for carbon emission. Peatland restoration aims to return these degraded sites to a 
natural state. Multiple means of remotely monitoring the success of peat restoration are available, ranging from 
space-based satellite measurements (optical and radar) to airborne geophysical measurements (electro-magnetic 
and radiometric). This paper integrates multi-band, spatially coincident, remotely sensed data into a single 
framework, resulting in a comprehensive interpretation of intra-peatland variation of key restoration indicators. 
It uses a semi-automatic, data driven approach with unsupervised neural network machine learning clustering. A 
Multi-Cluster Average Standard Deviation metric is introduced which can determine the appropriate number of 
clusters for any dataset. The method was applied to a site in Ireland, representative of degraded peatlands, where 
optical satellite and airborne radiometric geophysical measurements were combined. The method was successful 
at determining the appropriate number of clusters for single and combined datasets, and the resulting cluster 
signatures provided visually compelling representations of the intra-peatland variation. This resulted in a 
comprehensive interpretation of intra-peatland variation of several key peatland restoration indicators, namely 
surface vegetation levels and soil moisture to ~ 60 cm of the peat surface. The study provides a framework for 
high spatial and temporal resolution monitoring of peatland restoration using future drone-based platforms.   

1. Introduction 

Peatlands are recognised as significant ecosystems for biodiversity, 
water system services and carbon (C) stores (UNEP, 2022). The United 
Nations Framework Convention on Climate Change (UNFCCC) high
lighted peatlands as a priority via the introduction of the Wetlands 
Drainage and Rewetting (WDR) activity under Article 3.4 of the Kyoto 
Protocol (UNFCCC, 2011). Peatlands account for 5 – 30 % of soil C stock 
(Minasny et al., 2019; UNEP, 2022) while covering only ~ 3 % of the 
earths land surface (Xu et al., 2018). Drained/degraded peatlands, used 
for industrial extraction, forestry, or agriculture (pasture), are respon
sible for emissions which are affecting the global C balance (Evans et al., 
2021; Qiu et al., 2020; UNEP, 2022). 

The goal of peatland restoration is to return modified peatlands to 
their natural state, usually via changes to water table depth and vege
tation (Monteverde et al., 2022), with water table management being a 

key environmental control on C exchange between the soil and atmo
sphere (Wilson et al., 2022). Peatlands which have been historically 
drained and undergone restoration appear to be non-uniform in recov
ery, creating “locally novel ecosystems” (Kreyling et al., 2021). Spatial 
changes in depth to the water table will have consequences for several 
ecosystem functions such as plant community composition, water runoff 
and nutrient cycling (Kasischke et al., 2009). This implies that restora
tion plans require local measurement of properties within a peatland 
before and after restoration in order to measure success (Heger et al., 
2022; Renou-Wilson et al., 2019). The two main requirements to 
determine the effectiveness of a peatland restoration are ecological and 
hydrological monitoring (Mackin et al., 2017). Ecological monitoring 
represents mapping spatially and ecologically distinct features for the 
measurement of landscape structure and change. Hydrological moni
toring is focused on environmental factors such as water table depth, 
flow, and hydrochemistry. Both require monitoring prior to, during and 
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after restoration into the future. 
There are several established and emerging remote sensing tech

niques that can be used to measure peatland properties (Minasny et al., 
2019) and they have advantages over more traditional methods (e.g., 
large areas, consistent spatial sampling). These can include satellite 
remote sensing (Bhatnagar et al., 2020), airborne geophysical surveys 
(Boaga et al., 2020), drone-based surveys (Dronova et al., 2021), and 
ground geophysics (Altdorff et al., 2016). Optical satellite and airborne 
radiometric data are analysed in this paper. 

Satellite remote sensing methods (optical and radar) are prominent 
in the peatland mapping literature (Czapiewski and Szumińska, 2022). 
For example, the Sentinel program (Sentinel, 2022) is a series of earth 
observation missions performed by the European Space Agency and 
European Commission initiative, Copernicus. This program provides 
free access to optical (Sentinel-2) and radar (Sentinel-1) data at spatial 
resolution of ~ 10–30 m and a temporal resolution of between 3 and 10 
days, depending on the satellite mission. These have become popular as 
they provide consistent spatial and temporal resolution and are sensitive 
to physical properties related to peatland identification and monitoring 
(Minasny et al., 2019) as they are sensitive to landcover (optical) and the 
near surface (radar) to a depth of ~ 10 cm. 

Optical sensors on satellites record multiple bands of electromag
netic energy as reflectance values, ranging from the visible to shortwave 
infra-red. These values can be used to identify landcover type via 
“spectral signatures” and seasonal changes in landcover via changes to 
these signatures (Aune-Lundberg and Strand, 2021; CORINE, 2018). 
However, optical data are degraded or non-existent in the presence of 
cloud cover/shadow, which reduces the temporal resolution in 
temperate regions (Connolly, 2019). Often, indices (mathematical 
combinations of data bands that produce a single number which is 
sensitive to particular physical properties of interest) are used (Cza
piewski and Szumińska, 2022; Wang and Qu, 2009). Of these, Normal
ised Difference Vegetation Index (NDVI), Enhanced Vegetation Index 
(EVI) and Normalised Difference Water Index (NDWI) are popular 
(Frampton et al., 2013). Within a peatland these and other indices can 
yield information on landcover types such as bare peat and vegetation 
(Bhatnagar et al., 2020) at a resolution of ~ 10 – 30 m. 

Airborne geophysical surveys are suited to peatland mapping (Airo 
et al., 2014; Berglund and Berglund, 2010; Boaga et al., 2020), as they 
cover large areas quickly and consistently (Ameglio, 2018; Binley et al., 
2015) and are sensitive to subsurface physical properties such as den
sity, porosity, and water content. National airborne geophysical surveys 
which include electromagnetic and gamma-ray spectrometry (radio
metric) data can be used in regional and local scale peatland studies 
(Beamish and Young, 2009; Berglund and Berglund, 2010; Siemon et al., 
2020). 

Airborne radiometric surveys measures the naturally occurring ra
diation emitted by radionuclides in geological material (Minty, 1997). 
Typical elements of interest are Potassium (40K), Uranium (238U) and 
Thorium (232Th) (Reinhardt and Herrmann, 2019). These are recorded 
as energy bands in counts per second (cps), with a 4th Total Count (TC) 
measurement recorded for the full energy spectrum. While it has his
torical applications in the mineral industry (Shives et al., 2000) and 
geological mapping (Martelet et al., 2006), recent studies have begun to 
recognise the potential of radiometric data in soil (Beamish, 2015; 
Marchant, 2021; Priori et al., 2014) and, in particular, peat mapping 
(Beamish, 2014; O’Leary et al., 2022; Siemon et al., 2020). 

As peat is a non-radioactive material, several studies have attempted 
to link radiometric data to peat thickness estimation (Gatis et al., 2019; 
Keaney et al., 2013; Siemon et al., 2020). However, attenuation models 
(Beamish, 2013) show that 90 % of radiometric signal is attenuated in ~ 
60 cm of typical peat, therefore limiting peat thickness estimation but 
may have potential for mapping peatland extent (O’Leary et al., 2022) 
and subsurface physical properties within this depth range. Soil mois
ture variation in this layer may be responsible for radiometric signal 
variation as water is a strong attenuator (Beamish, 2013; Endrestøl, 

1980). It is likely that a complex combination of thickness and soil 
moisture are the biggest drivers of radiometric signal variation within a 
peatland (Reinhardt and Herrmann, 2019); however, vegetation may 
also have an attenuation effect (Minasny et al., 2019; Minty, 1997). 

Peatlands are complex ecological and hydrological environments 
(Price et al., 2003). The influence of such complexity within a peatland 
requires simultaneous analysis of multiple data sources over a site in 
order to extract meaningful and comprehensive information about 
peatland processes (Kreyling et al., 2021; Räsänen et al., 2022). Machine 
learning, which is becoming prevalent in geoscience (Dramsch, 2020), 
has the ability to exploit non-linear statistical relationships between 
data bands to aid in data visualisation and model building. Un- 
supervised machine learning can achieve this, using the concept of 
exploratory data analysis (EDA; (Chatfield, 1986). EDA aims to (1) 
maximise insight into a data source, (2) visualise potential relationships 
between data vectors, (3) detect data vectors that vary significantly from 
others, (4) develop an explanatory model of the data source, and (5) 
extract relevant data bands from the overall data source. 

Clustering (synonymous with the term classification) is the grouping 
together of multi-band data vectors (Kaufman, 2005), where the 
grouped input data vectors are statistically similar to each other. Many 
clustering techniques have been developed such as centroid, hierarchi
cal, density and spectral clustering, each with their own advantages and 
disadvantages (Benabdellah et al., 2019; Delgado et al., 2017). See 
Table 1 for a list of descriptors used in this paper. 

The aim of this paper is to develop a data driven, objective, and semi- 
automatic technique to determine the range of appropriate number of 
clusters, using an unsupervised classification of spatially coincident data 
bands from multiple data sources. This has implications across many 
domains of research. The technique is demonstrated in this paper using 4 
bands of airborne radiometric and 13 bands of optical satellite data over 
previously delineated peatlands (O’Leary et al., 2022). These datasets, 
which ideally should be spatially and temporally coincident, are related 
to spatial physical property variation (landcover and soil moisture), 
which are important indicators of restoration success (Mackin et al., 
2017). The methods presented provide a framework to perform an initial 
investigation prior to a peatland restoration program and a means to 
monitor success of such a program into the future (Mackin et al., 2017). 
They have implications for integrated interpretations of datasets from 
multiple sensors, including those in future high-resolution drone-based 
applications. 

2. Materials and methods 

2.1. Clustering 

2.1.1. Self-Organising Maps 
Traditional centroid-based clustering methods, such as K-Means 

(Gersho, 1982), rely on minimising the distance between data vectors 
and a finite number of cluster signatures in the dataspace. Self- 

Table 1 
Definitions of data descriptors in text.  

Name: Definition: 

Data Source A single source of spatially and temporally coincident data (e.g., 
Sentinel-2 data from a single date, radiometric data) 

Data Band A single stream of data from within a data source (e.g., Sentinel-2, 
Band 8 or radiometric, K cps) 

Data Vector All data that are located on a single spatial coordinate from 
described data bands and data sources (e.g., Sentinel-2, 13 bands 
become a data vector of 13 numbers at spatial location x, y) 

Data Space The virtual multi-dimensional space with as many axes as there are 
data bands being analysed 

Cluster A single identifier for a subset of input data vectors (e.g., Cluster 1 
contains x number of input data vectors) 

Cluster 
Signature 

A single data vector that can describe all data vectors associated 
with a particular cluster  

D. O’Leary et al.                                                                                                                                                                                                                                



Geoderma 430 (2023) 116348

3

Organising Maps (Kohonen, 2013) rely on competitive learning within a 
neural network to assign any data vector to a particular cluster (Val
entine and Kalnins, 2016). This is a form of unsupervised classification 
(Kiang, 2001) and is considered suitable where the goal is to visualise 
multi-dimensional data (Benabdellah et al., 2019) by exploiting non- 
linear statistical relationships between datasets that traditional 
(linear) methods (correlation, regression, etc.) cannot capture. 

In order to cluster the data within the Self-Organising Maps algo
rithm (Kohonen, 2013), a number of cluster signatures must be “ini
tialised”. These contain the same number of bands as the data vectors 
and are initially assigned random values in the data space. A data vector 
is compared to each cluster signature, via a data space distance metric, 
and the “winning” cluster is assigned. The winning cluster signature is 
updated to be more numerically similar to the data vector it represents. 
This process takes place for all input data vectors iteratively until each is 
assigned to a cluster. Each cluster signature is then said to represent a set 
of input data vectors that are numerically similar to it. See Appendix A 
supplementary material. 

Determining the appropriate number of clusters for a dataset is 
difficult (Benabdellah et al., 2019; Delgado et al., 2017) often requiring 
subjective, a priori, or expert knowledge of the clustering algorithm. 
Clusters are chosen based on an expected or known number (Marsh and 
Brown, 2009). Frequently, clustering validation tools are used (Benab
dellah et al., 2019) to determine if the number of clusters is statistically 
significant. These calculate several internal statistics such as the 
Calinsku-Harabasz index (Caliński and Harabasz, 1974), Connectivity 
index (Xing et al., 2005), or the Davies-Bouldin index (Davies and 
Bouldin, 1979). 

2.1.2. Appropriate number of clusters 
The simple and novel approach presented here expects that the 

appropriate number of clusters for a set of input data vectors is any 
which returns similar cluster signatures after multiple clustering at
tempts. To achieve this, the clustering process is performed multiple 
times (e.g., 100 loops) for an increasing number of clusters, starting with 
1 and increasing to X (e.g., 20) cluster signatures (Fig. 1). For each 
clustering loop the distance, in the data space, between the cluster 
signature and each associated data vector is calculated and saved. Then, 
the standard deviation of distance is calculated for each data vector once 
all loops are complete. Finally, an average of the standard deviations is 
calculated, resulting in the Multi-Cluster Average Standard Deviation 
(MCASD) metric. The aim of a MCASD analysis is to facilitate the choice 
of highest number of clusters, and therefore the highest spatial resolu
tion, without compromising the stability of the solution, which is 
determined from multiple clustering loops. A low value of MCASD is a 
consequence of repeatable cluster signatures, despite random initiali
sation (Delgado et al., 2017), and is an indication that the associated 
number of clusters is appropriate to describe the range of input data 
vectors. A maximum of 100 loops and 20 clusters proved adequate to 
determine which number of clusters is appropriate for the data in this 
study. 

2.1.3. MCASD in practice 
To demonstrate the MCASD method on spatial data, a data source 

with a known number of clusters was used as input data vectors. This 
synthetic data source has previously been used in an example of the 
application of Self-Organising Maps to geospatial data (Marsh and 
Brown, 2009). It can be considered analogous to a geo-spatial dataset as 
it shows a varying background with a non-distinct border and anoma
lous structures, where each pixel has an assigned geographic coordinate. 
A graph of the MCASD metric against number of cluster signatures 
(Fig. 2-A) shows that 1 – 4 clusters are appropriate to visualise this data 
source. 

The data source is a greyscale image of rice grains which are 
randomly orientated within a variable background intensity (Fig. 2-B). 
The image consists of 65,536 data vectors organised as a single data 

band with a brightness value ranging between 1 and 256. This image can 
be broken into four groups, (1) bright background, (2) dark background, 
(3) rice on light background, and (4) rice on dark background. Fig. 2-C 
shows the output of the first cluster loop when the number of clusters is 4 
and shows the expected classifications with some minor misclassifica
tion present. See Appendix A supplementary material for further 
descriptive diagrams and animations. 

This clustering method does not take coordinates of the pixel into 
account, but instead groups data based on similarity between the various 
data layers (in this case a brightness value). Each data vector is then 
given a number (1 – 4 for example) representing which cluster it belongs 
to. The data vectors are then reprojected back to their respective loca
tion in the image and coloured based on this number. The resulting 
spatial distribution is related to geographical locations where data are 
similar. 

The spatial distribution would change with the number of clusters 
used, however the purpose of MCASD analysis is to provide confidence 
that the number of clusters chosen, and that the spatial distribution of 
the clusters is relevant and appropriate. 

2.2. Site 

A site in central Ireland was chosen because (1) it is typical of those 
industrial peatlands in the northern hemisphere being targeted for 
restoration (Bord na Móna, 2021), (2) there are ground-based datasets to 
constrain the interpretations in this paper, and (3) spatially coincident 
Sentinel-2 (S2) and radiometric datasets are available. 

Garryduff peatland (Lat: 53.25◦ N, Long: 8.08◦ W) is a former raised 
bog, and has been an extraction site from 1968 until 2019 (Bord na 
Móna, 2021) (Fig. 3-A). The site is described as ~ 50 % bare peat, with 
active drainage channels, standing water and emerging wetland vege
tation making up the rest. Peat thickness on site is generally greater than 
~ 50 cm (Bord na Móna, 2021). The site was actively pumped to 

Fig. 1. Multi-Cluster Standard Deviation (MCASD) flowchart.  
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maintain an artificially deep water table. 
The peatland boundaries (Fig. 3-B) were defined using radiometric 

data (O’Leary et al., 2022) and a supervised machine learning meth
odology. This resulted in a 50 × 50 m resolution raster, delineating 
pixels which have been defined as either Peat or non-Peat. O’Leary et al. 
(2022) demonstrate that the technique improves delineation of peat 
boundary and peat under modified landcover compared to recognised 
national databases (CORINE, 2018). Therefore, only the 16,633 pixels 
(~4,200 ha) that fall within areas defined as peat (Fig. 3-B) are carried 
forward for further analysis. 

The underlying bedrock is recorded to be limestone and shale (GSI, 
2022a) and the quaternary sediment is a mixture of “cut over raised 
peats”, “alluvium” (close to the rivers) and “till derived from limestone” 
(GSI, 2022b). Landcover classification (Fig. 3-C) from the European 
Space Agency (CORINE, 2018) shows a mixture of peat bog, grassland 
and forestry but provides no information on soil type. The CORINE 2018 
landcover map has a resolution of 25 ha (CORINE, 2018), and has been 
converted to a raster with 50 × 50 m resolution for visualisations within 
this study. 

2.3. Optical satellite data 

S2 satellites were only launched in June 2015 and no cloud-free 
images from the study site were acquired during June 2016, when the 
radiometric data source was acquired, highlighting the issue of cloud 
cover inherent in the use of all optical satellite data in temperate lati
tudes such as Ireland (Connolly, 2019). As an alternative to a temporally 
coincident dataset, two Level 1-C S2 images, acquired on 20/06/2017 
and 28/06/2018, were downloaded from the Copernicus Hub (https 
://scihub.copernicus.eu). These dates were chosen as they were (1) 
cloud-free over the study site and (2) were acquired at a similar time of 
the year as the radiometric data source in this study (see section 2.4). 
The temporally and seasonally closest cloud-free S2 image was acquired 
in June 2017. In order to verify that this image is representative of the 
landcover variation at the time of radiometric data acquisition, a second 
image, acquired in June 2018 was also analysed to establish that land
cover did not significantly change from one year to the next. 

DOS1 atmospheric correction (Chavez, 1996) was applied to all S2 
data bands in QGISv3.16 using the SCPv7.10.5 plugin (Congedo, 2021). 
The data were re-projected to a common reference system (EPSG: 2157 – 
Irish Transverse Mercator) and resampled to 50 × 50 m resolution, 
required to match “pixel to pixel” to other datasets used in this study. 

Fig. 2. A) MCASD graph for maximum of 20 experimental cluster signatures. B) Original Grey scale image C) Clustered output coloured by cluster number.  
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The standard indices (Bhatnagar et al., 2020), highlighted in Section 1, 
were calculated to visualise and compare the two S2 data sources (Fig. 3- 
D to 3-I). 

2.4. Airborne geophysical data 

The Tellus survey (GSI, 2022c) is a national airborne geophysical 
acquisition survey that acquires spatially consistent data covering 
Ireland. It collects three coincident geophysical datasets, electromag
netic, magnetic, and radiometric. The data are acquired in acquisition 
blocks with similar acquisition parameters. Survey lines are flown at 
345◦ and a line spacing of 200 m and ground clearance of 60 m. 

However, this is occasionally exceeded due to terrain or flight 
restrictions. 

Radiometric data were collected at 1 Hz, which equates to ~ 60 m 
sample spacing along flight lines. Data processing is performed by the 
contractor and follows international guidelines (IAEA, 2003). The 
radiometric data in this study were selected from the Tellus Block A2 
(Fig. 3-A). A total of 6,445 datapoints were acquired over the Garryduff 
site as a set of 25 flight lines (~387 line km’s) on 3rd June 2016. The 
data bands were downloaded as elemental concentrations for Potassium 
(K), Uranium (U) and Thorium (Th) and converted to counts per second 
(cps) via sensitivity values, which are contractor provided values to 
convert recorded gamma ray counts per second to an elemental 

Fig. 3. A) Aerial image with industrial peatland boundary with inset showing Tellus Radiometric Block A2 and study location within Ireland. B) Peat vs non Peat 
extent for the study site edited from O’Leary et al. (2022) (Fig. 6) highlighting the spatial extent of data used in this study. C) CORINE 2018 landcover classification. 
D) - I) S2 images of NDVI, EVI, and NDWI for days in summer 2017 and 2018. North Arrow in B is relevant for all images. 
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concentration (SGL, 2017). The Total Count (TC) data band is provided 
in cps. Each data band was then interpolated using minimum curvature 
to a 50 × 50 m grid and QGISv3.16 was used for visualisation and GIS 
analysis (Fig. 4-A to 4-D). All data were reprojected to the common 
reference system. The interpolation, along with the inherent low signal 
environment that peatlands present (Beamish, 2014), are the cause of 
negative values in the radiometric signal. While not physically possible, 
they are not removed from this analysis as the neural network methods 
rely on statistical relationships between the data bands, not their abso
lute values. 

2.5. Data organisation and traditional analysis 

S2 images (13 optical bands), and the radiometric (4 cps bands) data 
sources were analysed separately using the MCASD method. Each S2 
image was also combined with the radiometric data source and analysed 
as an integrated, 17 band, data source. Data bands were placed into 
columns and normalised (with each column scaled between 0 and 1), to 
remove scaling bias between bands. Once MCASD analysis was com
plete, the results were presented as a MCASD graph, similar to Fig. 2-A, a 
raster map showing the spatial distribution of the clusters and a unique 
cluster signature graph, similar to a “spectral signature graph” (Huete, 
2004) used in S2 classification applications. 

Linear correlation analysis was performed between S2 indices 
(Fig. 3-D to 3-I) and radiometric data bands (Fig. 4-A to 4-D) to justify 
the selection of S2 data source and the use of non-linear machine 
learning over traditional data analytical methods. This analysis was also 
performed between four radiometric data bands and peat thickness data 
(Bord na Móna, 2021) (See Appendix A supplementary material for di
agram) from within the Garryduff site boundary (Fig. 3-A) to aid 

discussion on intra-peatland variation of radiometric signal. 
One possible means to identify intra-peatland variation of radio

metric signal is through the use of Horizontal Gradient Magnitude 
(HGM) analysis (Beamish, 2016), which highlights areas of changing 
radiometric signal. This analysis was applied to the TC band of the 
radiometric data source (Fig. 6-D) as a comparison to the machine 
learning method presented here. 

3. Results 

3.1. Linear correlation analysis 

Correlation was performed between four radiometric data bands and 
a peat thickness data source (Bord na Móna, 2021), where there were 
3,554 coincident data vectors. This returned correlation coefficients of: 
K cps: − 0.04, U cps: 0.19, Th cps: − 0.06 and TC cps: 0.25. These cor
relation results indicated a weak link between radiometric band vari
ability and peat thickness variability within the Garryduff site boundary 
(See Appendix A). 

Correlation was also performed between the four radiometric data 
bands and the S2 indices (Fig. 3-D to 3-I). These results indicated a 
moderate correlation between the radiometric data bands and the 
relevant indices, with the correlation being marginally higher for 2017 
S2 data source (Table 2). 

3.2. MCASD on S2 data sources 

The top row (Fig. 5) from MCASD analysis shows that four clusters 
are appropriate when clustering S2 data from 20/06/17 and that three 
clusters are appropriate for S2 data from 28/06/18. The middle row 

Fig. 4. A) Tellus Radiometric K cps. B) Tellus Radiometric U cps. C) Tellus Radiometric Th cps. D) Tellus Radiometric TC counts per second (cps).  

D. O’Leary et al.                                                                                                                                                                                                                                



Geoderma 430 (2023) 116348

7

shows the unique signature (Huete, 2004) for each cluster signature. 
Both data sources had similar cluster signatures in terms of amplitude of 
band values. The bottom row shows the spatial distribution for the 
associated clustered result for each S2 data source. The main difference 
between the MCASD results is that the rededge1 (B5) amplitude is 
significantly larger in S2 data from 2018, compared to 2017. From the 
spatial distribution and cluster signature plots, it appears that Cluster 3 
(2018) is comparable to Clusters 3 and 4 (2017). 

3.3. MCASD on radiometric data 

The MCASD graph (Fig. 6-A) shows that 2 – 5 clusters may be used to 
group these radiometric data bands. The 5-cluster result is then shown 
via the unique cluster signature plot (Fig. 6-B) and the spatial distribu
tion map (Fig. 6-C). 

The cluster signature plot of normalised radiometric values shows 
that radiometric signal is relatively high for all four bands in Cluster 1 
and low in Cluster 5. The spatial distribution of these clusters shows that 
Cluster 1 is generally found around the edges and Cluster 5 is located in 
the interior of the peatland areas. 

There is potential for spatial variability in the sub-peat radiometric 
source intensity to be a factor in intra-peatland signal variation 
(Beamish, 2014). However, the study site is underlain by a single 
geological unity (GSI, 2022a) and so it is assumed that the sub-peat 
source of gamma rays is spatially constant. 

Horizontal Gradient Magnitude analysis was applied to the TC band 
of radiometric data source (Fig. 6-D). Areas of high values (red) indicate 
a changing radiometric signal in this band and areas of low values (blue) 
indicate areas of stable signal (Beamish, 2016). The edges of the peat
land show the highest value, as the data pass from non-peat to peat soils 
(O’Leary et al., 2022) and intra-peatland variation of radiometric signal 
is also highlighted. 

3.4. MCASD on combined S2 and radiometric data 

S2 data bands were combined with radiometric data bands to pro
vide a single integrated data source originating from the landcover and 
the subsurface to a maximum depth of ~ 60 cm. The 2017 S2 data bands, 
combined with radiometric data bands, are shown (Fig. 7). The results, 
when combined with 2018 S2 data bands, are very similar (See Ap
pendix A supplementary material for diagrams). 

The MCASD analysis determines that three clusters can be used to 
appropriately group these data bands (Fig. 7-A). The spatial distribution 
of these clusters (Fig. 7-B) shows that Cluster 1 is generally located at the 
edges and Cluster 3 is generally located towards the centre of defined 
peatlands. 

The cluster signatures (Fig. 7-C) for S2 bands are shown in absolute 
values and radiometric bands are shown in normalised values as the 
absolute dynamic ranges of S2 and radiometric data sources are signif
icantly different. Cluster 1 shows elevated values of S2 green (B3) and S2 
red edge to near infra-red (B5 - B8A) and high radiometric band values. 
Cluster 2 has mid-range values of both B5 - B8A and radiometric bands. 
Cluster 3 is defined by low B5 - B8A bands, high S2 short wave infra-red 
(B11 – B12) and low radiometric band values. 

4. Discussion 

4.1. Intra-peatland landcover mapping from S2 data 

The S2 optical satellite data provided a means to analyse the intra- 
peatland landcover variation as a function of time, a proxy ecological 
indicator for vegetation (Bhatnagar et al., 2020). All 13 bands of the S2 
data source were included in the analysis. The majority of the literature 
uses limited data bands to calculate indices, representative of the 
landcover type of interest (Arekhi et al., 2019; Hird et al., 2017; 
Maduako et al., 2017). Bhatnagar et al. (2020) used a combination of 10 
bands alongside several indices in a machine learning prediction 
framework. However, to the authors’ knowledge, no studies have yet 
combined the aims of exploratory data analysis (Chatfield, 1986) and 
unsupervised neural network clustering with full spectrum S2 data. 

Indices have been traditionally derived due to physical relationships 
between relevant data bands and landcover of interest (Gao et al., 2000; 
Liu and Huete, 1995) and tend to be universally applicable and not 
necessarily site specific (Frampton et al., 2013). By including all 13 S2 
data bands in this analysis, the results were not biased by any subjective 
choice of indices and were focused on the site under investigation. The 
standard indices calculated here showed the S2 data from 2017 and 
2018 to be similar (Fig. 3-D to 3-I); however, none of them included B5, 
the red edge component, which showed significant discriminatory 
power (Fig. 8) that might otherwise have been missed. 

The choice of the appropriate number of clusters has been deter
mined by MCASD analysis. The spike noted when MCASD was per
formed for three clusters in the 2017 S2 data source (Fig. 5-A) indicated 
that three was not an appropriate number of clusters for this data source. 
The MCASD analysis prevents the use of the three-cluster result in any 
further analysis. See Appendix A for explanatory diagram. 

The spatial distribution of both S2 MCASD analysis are shown with 
visual comparison from CORINE 2018 landcover (Fig. 8-C) and are 
similar to the spatial distribution of calculated indices (Fig. 3-D to 3-I). 
This indicates that the MCASD analysis provided a means to visualise all 
13 bands of these complex data sources in a comparable way to recog
nised methods. 

The cluster vector signatures for both S2 MCASD results were over
lain on a single plot (Fig. 8-D). The absolute values for the cluster sig
natures were very similar. The main difference is the S2 rededge1 (B5) 
data band were significantly different between the two cluster signature 
results (Fig. 8-D). 

The reason for the difference between the two data sources may be 
explained by differing environmental conditions. A heatwave was 
recorded in Ireland in 2018 (Met Eireann, 2018), resulting in an increase 
in drought conditions. The red edge part of the electromagnetic spec
trum is sensitive to plant chlorophyll content and increased red edge 
reflectance can indicate vegetation stress (Filella and Penuelas, 1994). 
Here, this stress was highlighted in the increased B5 reflectance values 
noted in 2018 S2 results and generally lower values in B6-B8A, when 
compared to 2017 S2 results. This environmental difference might also 
explain the difference in appropriate cluster numbers (Fig. 5-A/B) be
tween the two S2 data sources. The heatwave in 2018 may have caused 
less green vegetation (predominantly shrubs and birch trees (Bord na 
Móna, 2021)) in the area classified as “peat bogs” (Fig. 8-C), therefore 
changing the reflectance values and the MCASD results in this area. 

Using two instances of S2 data sources served several purposes. 
Firstly, it allowed for a comparative analysis, alongside the correlation 
results (Table 2), to validate the use of S2 2017 data source when 
combined with a radiometric data source from the previous year. Sec
ondly, it highlights the need for objective analysis when choosing the 
appropriate number of clusters for a data source. Thirdly, it highlighted 
the potential of the framework developed here to show temporal 
(gradual or sudden) (Watson et al., 2014) changes to peatland land
cover, similar to that described in Bhatnagar et al. (2020), as the same 
analysis could be applied to seasonally averaged S2 data to show gradual 

Table 2 
Correlation coefficients between radiometric data bands and calculated S2 
indices.   

NDVI 
2017 

EVI 
2017 

NDWI 
2017 

NDVI 
2018 

EVI 
2018 

NDWI 
2018 

K cps  0.53  0.57  0.54  0.51  0.57  0.52 
U cps  0.46  0.50  0.45  0.43  0.49  0.43 
Th 

cps  
0.53  0.56  0.52  0.50  0.56  0.51 

TC 
cps  

0.71  0.75  0.71  0.68  0.74  0.89  
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change, or to individual instances of S2 data to show sudden change. 

4.2. Subsurface Intra-peatland variation of radiometric signal 

Several studies have attempted to link the TC band in radiometric 
data to peat thickness. Gatis et al. (2019) combined this band with high 

resolution topography indices and Keaney et al. (2013) implemented a 
combined interpolation of this band with in-situ peat thickness mea
surements. Both studies reported mixed results and a decrease in con
fidence with increased peat thickness. Correlation analysis between 
radiometric data bands and peat thickness (section 3.1) indicated that 
the radiometric data bands were not sensitive to peat thickness variation 

Fig. 5. MCASD analysis for two (2017 and 2018) S2 data sources. A-B) MCASD graph for maximum of 20 experimental cluster signatures. C-D) Cluster signatures for 
S2 bands. E-F) Spatial distribution of each clustering solution. 
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at this site. This is likely due to peat thickness being consistently greater 
than ~ 60 cm (Bord na Móna, 2021). 

Water has a ~ 10 % greater attenuation strength compared to 
geological material (Beamish, 2014; Endrestøl, 1980). Peat has very low 
bulk density (Kiely and Carton, 2010) and very high porosity (Galvin, 
1976). The low bulk density further reduces the attenuation strength of 
the solid component of a peat soil (O’Leary et al., 2022), while high 
porosity provides pore space for high volumetric water content in the 
soil. 

Vegetation may also have an attenuating effect on gamma rays 
(Minasny et al., 2019; Minty, 1997). This is an ongoing research area in 
the relatively new discipline of radiometric mapping of soils (Beamish, 
2015; Rawlins et al., 2007). However, the effect was not noted in this 
study as clusters identified as having vegetation from CORINE 2018 
landcover (Fig. 3-C) also had a high radiometric value, indicating less 
attenuation. 

One means to analyse radiometric signal variation is the Horizontal 
Gradient Magnitude (Beamish, 2016) which highlights areas of chang
ing radiometric signal (Fig. 6-D). This method, however, only uses a 
single data band (TC) and does not provide a means to spatially link 
areas of similar radiometric signal. In this study, the use of MCASD 
analysis included all radiometric data bands acquired over this site and 

determined they can be gathered into a maximum of five clusters (Fig. 6- 
A), highlighting the spatial distribution of these clusters in the 
landscape. 

The spatial distribution of these clusters (Fig. 6-C) are qualitatively 
comparable to CORINE landcover (Fig. 3-C). Clusters 4 and 5 appear to 
follow the “peat bogs” classification. And Clusters 1, 2 and 3 appear to 
follow the vegetation classifications. However, the radiometric results 
are sensitive to subsurface physical properties. These results may indi
cate areas of similar soil moisture across the site, with Cluster 1 being 
least and Cluster 5 being most saturated. The use of airborne radiometric 
data was to provide a means to analyse the intra-peatland subsurface 
variation of soil moisture (Beamish, 2013; Endrestøl, 1980), a hydro
logical indicator in the context of peatland restoration monitoring. 

4.3. Integrated landcover and subsurface interpretation 

Traditional correlation is a linear link between data sources, how
ever the complexity inherent in peatland (Price et al., 2003) results in 
the need for a non-linear algorithm, such as neural networks, to exploit 
any link. The combination of optical and radar satellite data has yielded 
increased confidence in water table depth prediction (Räsänen et al., 
2022). However, satellite data sources only measure the very near 

Fig. 6. MCASD analysis for radiometric data source. A) MCASD graph for maximum of 20 experimental cluster signatures. B) Normalised cluster signatures for 
radiometric data bands. C) Spatial distribution of the 5-cluster solution. D) Horizontal Gradient Magnitude Analysis of TC data band (Beamish, 2016) (Blue = low 
horizontal gradient, Red = High horizontal gradient). 
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surface (Minasny et al., 2019) and must infer subsurface information. 
Radiometrics is a direct measurement of the subsurface and was com
bined with 2017 S2 in an unsupervised neural network. 

The combined result (Fig. 7) represents an interpretation from land 
surface to subsurface depth of ~ 60 cm. The spatial distribution of the 
combined MCASD analysis closely followed the CORINE 2018 (Fig. 8-C) 
landcover, however there was increased resolution within the “peat 
bogs” landcover class. The cluster signature plot (Fig. 7-C) shows that 
the areas of strong vegetation response (B5 – B8A) in the S2 data bands 
are linked with the highest radiometric values, indicating less attenua
tion of radiometric signal in these areas. Areas of low vegetation 
response are linked to areas of strong radiometric attenuation, but the 
data do not rule out the possibility that near-surface (i.e., below ~ 2 
mm) water might also be contributing to a low radiometric response. 

S2 data also act as a proxy for soil moisture in the top few mm of the 
surface, specifically via the SWIR (B11 and B12) (Tian and Philpot, 

2015), with increased soil moisture generally resulting in decreased 
reflectance in these bands. When compared to Clusters 1 & 2, a relative 
increase in B11 and 12 reflectance in Cluster 3 (Fig. 7-C), indicates a 
relative decrease in surface (~2 mm) moisture. However, this cluster 
also shows a relative decrease in radiometric response, indicating an 
increase in the subsurface (~60 cm) moisture. This validates a combined 
data source MCASD analysis to provide a full vegetation to surface to 
subsurface analysis and further highlights the advantage to including all 
13 S2 data bands. 

Based on the understanding of S2 and radiometric responses, the 
peatlands area is now classified into three clusters (Fig. 7). Cluster 1, 
which represents grass lands around the edge of the peatlands, likely 
with thin, dry peat and overlain by mineral soils. Cluster 2, which rep
resents forested and/or grassland areas with wet soil, highlighted by a 
reduced radiometric response indicating either wetter or thicker peat 
material is present. And Cluster 3, which represents open peatlands 

Fig. 7. MCASD analysis for combined S2 and radiometric data source. A) MCASD graph for maximum of 20 experimental cluster signatures. B) Spatial distribution of 
the 3-cluster solution C) Cluster signatures for all data bands (S2 bands are absolute values and radiometric bands are normalised values for ease of visualisation). 
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areas, with limited vegetation, relatively low surface soil moisture, and 
relatively high subsurface soil moisture. 

4.4. Implications for and beyond peatland monitoring 

The combined MCASD analysis has provided a data driven, semi- 
automatic method to analyse multiple data sources. In the context of 
peatlands, once a peatland extent has been identified, this framework 
may provide a tool to monitor peatland restoration (Mackin et al., 2017) 
by providing a set of baseline conditions prior to restoration, as well as 
temporal monitoring during and after restoration (Bhatnagar et al., 
2020). Other temporally and spatially coincident data sources may also 
be integrated to this framework. 

Sentinel 1 radar backscatter data may provide soil moisture infor
mation to ~ 10 cm depth (Bauer-Marschallinger et al., 2019; Bechtold 
et al., 2018). However, currently the noise in this source of data results 
in a spatial resolution which is not ideal for plot scale studies. Airborne 
electromagnetic measurements may be able to estimate peat thickness 
(Boaga et al., 2020; Siemon et al., 2020), however often vertical reso
lution is an issue, especially in areas with thin peats. 

This study highlights the difficulties of acquiring satellite-based op
tical data in temperate areas with persistent cloud cover (Connolly, 
2019). One way around this would be to acquire coincident optical and 
radiometric data bands using airborne or drone platforms (Dronova 
et al., 2021; Mustaffa et al., 2020; von Hebel et al., 2021). This could 
provide a temporally and spatially coincident data source, which is 
repeatable throughout the lifecycle of a restoration project. 

Restoration of peatlands aims to return these sites to near natural 

conditions including reintroduction of peatland habitats (Renou-Wilson 
et al., 2019) and maintaining a water table at ~ 10 cm depth (Evans 
et al., 2021). Repeat MCASD analysis of optical (landcover) and radio
metric (soil moisture) measurements (as well as other relevant datasets), 
may provide a useful tool in monitoring vegetation and water table 
levels over time, both indicators of restoration success (Mackin et al., 
2017). 

The methods presented in this article have application beyond the 
scope of peatland restoration and may be useful in any environment that 
requires a multi-sensor approach to analysis such as soil mapping (Brogi 
et al., 2019) and precision agriculture (von Hebel et al., 2021). 

5. Conclusions 

This paper has developed a new metric, Multi-Cluster Average 
Standard Deviation (MCASD), to facilitate the choice of the most 
appropriate number of clusters in an unsupervised classification of data 
from multiple sources. It demonstrates how stable clusters with the 
highest spatial resolution can be generated with, for example, Self- 
Organising Maps. The method was demonstrated using different com
binations of optical satellite and airborne radiometric data over a 
peatland but has implications for many research domains such as seabed 
mapping, precision agriculture and any discipline utilising multi- 
dimensional geospatial data. 

The use of machine learning neural networks in this study allowed 
for an objective analysis of intra-peatland variability of all data bands 
from S2 optical data. Self-Organising Maps produces a “spectral signa
ture” for each cluster highlighting differences in spectral bands. This 

Fig. 8. A) Spatial distribution of 2017 S2 
MCASD analysis. B) Spatial distribution of 
2018 S2 MCASD analysis. C) CORINE 
2018 landcover classification. D) Cluster 
vector signature plot (Solid lines = S2 
2017 4 cluster result, Dashed lines = S2 
2018 3 cluster result). Red box highlights 
B5-rededge. Grassland = CORINE 2018 
“arable land”, “Pasture”, “Agriculture 
(Nat Veg)” classes. Forestry = CORINE 
2018 “Coniferous Forest”, “Mixed Forest” 
classes. Peat and Peat (Veg) = CORINE 
2018 “Peat bogs” class.   
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“full spectrum” approach does not rely on only specific spectral bands of 
S2 data, as with indices such as NDVI, but can be used to show a 
comprehensive and visually simple view of the spatial and temporal 
variations in all S2 data bands across a site, highlighted here by B5 
differences indicating vegetation stress due to a heatwave. 

The same Self-Organising Maps approach was applied to intra- 
peatland variation of radiometric signal. This resulted in a multi- 
variate, quantitative means of linking areas of similar radiometric 
signal with the main advantage over traditional Horizontal Gradient 
Magnitude being the means to visualise variations in four bands of 
radiometric data simultaneously. Variation in radiometric signal on this 
site was most likely due to soil moisture. 

The combination of these two data sources within the MCASD 
method produced a comprehensive, integrated interpretation of intra- 
peatland variation of ecological and hydrological factors without the 
need for an extensive ground data collection campaign. An S2 data 
source from 2017 provided a proxy for surface vegetation and soil 
moisture levels across the study site, while radiometric data acted as a 
proxy for subsurface soil moisture to ~ 60 cm. The combination of these 
two data sources within an MCASD analysis resulted in the division of 
this peatlands site into three distinct zones of differing surface and 
subsurface conditions (Fig. 7). 

This study provides the framework for monitoring peatland habitat 
restoration, especially when considering spatially and temporally coin
cident, high resolution acquisition platforms, such as drones. 
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