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1   |   INTRODUCTION

A pesticide is any substance, plant protection product or 
biocide, that is used to repel, control or kill organisms that 
are considered to be pests (DAFM, 2017). The umbrella 

term “pesticides” includes herbicides, fungicides, insecti-
cides, molluscicides, bactericides and rodenticides (Mojiri 
et al., 2020). In Europe, total annual pesticide sales during 
the period 2011 to 2016 rose from 386,400 to 439,400 
tonnes of active ingredients, with France, Spain, Italy and 
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Abstract
Pesticides are widely employed as a cost-effective means of reducing the impacts 
of undesirable plants and animals. The aim of this paper is to develop a risk 
ranking of transmission of key pesticides through soil to waterways, taking into 
account physico-chemical properties of the pesticides (soil half-life and water 
solubility), soil permeability, and the relationship between adsorption of pesti-
cides and soil texture. This may be used as a screening tool for land managers, 
as it allows assessment of the potential transmission risks associated with the 
use of specified pesticides across a spectrum of soil textures. The twenty-eight 
pesticides examined were differentiated into three groups: herbicides, fungicides 
and insecticides. The highest risk of pesticide transmission through soils to wa-
terways is associated with soils containing <20% clay or >45% sand. In a small 
number of cases, the resulting transmission risk is not influenced by soil texture 
alone. For example, for Phenmedipham, the transmission risk is higher for clay 
soils than for silt loam. The data generated in this paper may also be used in the 
identification of critical area sources, which have a high likelihood of pesticide 
transmission to waterways. Furthermore, they have the potential to be applied to 
GIS mapping, where the potential transmission risk values of the pesticides can 
be layered directly onto various soil textures.
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Germany collectively accounting for 80% of the European 
market (Peña, 2020). In line with increases in global pop-
ulation, the use of pesticides in agriculture has increased 
to improve crop yields and production rates (Gavrilescu, 
2005; Morillo & Villaverde, 2017). While this intensified 
pesticide application has been beneficial in preventing 
hazardous diseases in agricultural crops (Maggi et al., 
2020), it has also amplified the contact of these compounds 
with soil (Morillo & Villaverde, 2017), air (Raherison et al., 
2019) and aquatic environments (Burri et al., 2019) and 
increased the risk of subsequent human exposure. This 
has resulted in human health issues, such as neurological, 
respiratory and carcinogenic effects (Pouchieu et al., 2018; 
Van Maele-Fabry et al., 2017; Ye et al., 2017). In 2007, glob-
ally, there was an estimated 258,000 deaths from pesticide 
self-poisoning (WHO, 2016).

It has been suggested that, under “worst case” scenar-
ios, such as improper handling and unfavourable weather 
condition, as little as 1% of applied pesticides may reach 
their target organism, with the remainder entering soil 
and water environments (Ali et al., 2019), via direct 
losses, runoff, spray drift or leaching (Álvarez-Martín 
et al., 2017; Cosgrove et al., 2019; Haddad et al., 2019; 
Mojiri et al., 2020), resulting in contamination of surface 
water or groundwater (Rojas et al., 2014). The European 
Environment Agency (EEA) reported that, of the 73,510 
natural water bodies with known chemical and ecologi-
cal status in the European Union (EU), 25,108 failed to 
achieve good chemical status (EEA, 2018), due to hydro-
morphological pressures, diffuse water pollution from 
agricultural practices, waste water treatment plants and 
sewage systems, as well as high inflow of nutrients and 
chemical contaminants including pesticides leading to ac-
celerated loss of biodiversity (EEA, 2016).

Mathematical models are now widely used to predict 
the fate and transport of pesticides in the environment 
(Bach et al., 2017; D’Andrea et al., 2020; Hartz et al., 2017; 
Rumschlag et al., 2019). Modelling presents an appealing 
alternative to environmental monitoring, which is costly 
and time-consuming. Modelling is fast, cost-effective and 
can predict how soil and climate conditions may affect, for 
example the environmental fate of pesticides (Bach et al., 
2017; McGrath et al., 2019). The main factors influencing 
the transport of pesticides to receptors are soil half-life 
(DT50; Fantke et al., 2014), adsorption and desorption to 
and from soil particles (Paszko & Jankowska, 2018), and 
physico-chemical properties of soil (Boivin et al., 2005). 
The adsorption of pesticides on the soil surface deter-
mines how pesticides are either transported or degraded, 
which ultimately determines the concentration of pesti-
cides in both soil and soil solution (Gondar et al., 2013). 
Adsorption is predominantly influenced by the properties 

and chemical composition of the soil, which is a com-
plex mixture of inorganic materials and organic matter 
(Leovac et al., 2015), and the physicochemical properties 
of the pesticide (Kodešová et al., 2011). The relationship 
between the organic content of the soil and pesticide ad-
sorption has been well examined in the literature (Rojas 
et al., 2013; Wei et al., 2015; Wu et al., 2018). However, the 
organic content of soil changes with time (Smith, 2004), 
meaning that it may not be a reliable metric for deter-
mining areas of high risk of pesticide loss in agricultural 
land management. The organic content of soil is also dif-
ficult to map, as it depends on soil and crop management 
practices. Conversely, the texture of the soil will remain 
more or less constant over time (Brouwer et al., 1985). A 
database of existing studies quantifying the relationship 
between adsorption of pesticides and the texture of the 
soil, using adsorption isotherm coefficients as a metric, 
could be a valuable tool in screening and in decision man-
agement protocols for the safe use of pesticides on certain 
soil textures. Although many soil factors have been in-
vestigated with regard to pesticide adsorption, including 
pH (Gondar et al., 2013; Kodešová et al., 2011), organic 
content (Boivin et al., 2005; Conde-Cid et al., 2019), pore 
size (Siek & Paszko, 2019) and cation exchange capacity 
(Kodešová et al., 2011), to date no study has conducted a 
meta-analysis of the literature that investigates the rela-
tionship between pesticide adsorption and soil texture.

Pesticide transport models used for national pesticide 
registration and licensing in the European Union, such as 
the FOCUS group's PRZM modelling approach, are highly 
complex models which take hours to run for a single pesti-
cide (European Soil Data Centre, 2022a, 2022b). Complex 
and data-hungry pesticide transport modelling software, 
as is used for pesticide licensing and registration in the 
EU, is not realistic or suitable for use by small-scale pes-
ticide users or localized pesticide management projects. 
Instead a quick and easily applied screening tool, such as 
that which is outlined in this paper, is proposed as a more 
practical tool for pesticide users in this case.

Therefore, the aim of this paper is to conduct a 
meta-analysis of literature that has assessed pesticide 
adsorption and soil texture data and integrate this with 
pesticide properties such as soil half-life and solubility, 
in order to determine if a relationship exists that could 
guide future modelling and decision-making protocols 
regarding the safe use of pesticides. This information 
may be used in the identification of critical source areas, 
which would have a high likelihood of pesticide trans-
mission to groundwater, or as an application in GIS map-
ping where the potential groundwater transmission risk 
values of the pesticides can be layered directly onto the 
various soil textures.
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2   |   MATERIALS AND METHODS

2.1  |  Literature review methodology, 
pesticide selection and grouping

A detailed literature search was undertaken by search-
ing keywords including the following: pesticide, soil, ad-
sorption, sorption, adsorption isotherm and soil texture 
triangle. The search was limited to peer-reviewed papers 
published, in English, since 2000 that included data on 
adsorption isotherm parameters and soil texture. Several 
reports were found in languages other than English (see, 
e.g. Regitano et al., 2002; Rocha et al., 2013) but, as these 
did not met the criteria outlined above, they were not 
included. No geographical limitations were employed. 
Search engines used included databases such as Scopus, 
as well as publisher-specific search engines including 
ScienceDirect, the American Chemical Society and the 
Royal Society of Chemistry. References from several pa-
pers found in these searches were also examined for rel-
evant information. Research papers were selected based 
on the relevance to the review, with a target on the most 
commonly used pesticides in articles. A total of 1212 ar-
ticles and a small number of book chapters and reports 
were reviewed.

Following this, the pesticides were ranked according 
to the number of studies in which they were investigated 
and they also had to be currently approved for use by 
the EU. This resulted in a short-list of 54 publications, 
reporting on the 28 most commonly studied pesticides, 
which are still available for use and are not banned in 
the EU or elsewhere. These 28 pesticides were grouped 
into herbicides, fungicides and insecticides, with no 
molluscicides, bactericides or rodenticides present in 
that group.

2.1.1  |  Herbicide group

Herbicides are chemical agents which are used to kill or 
inhibit unwanted plants or weeds (Oliveira et al., 2020; 
Thiour-Mauprivez et al., 2019). They can act as contact 
herbicides, which kill only the plant parts contacted 
by the chemical agent, or as systemic herbicides, which 
are absorbed through the roots or leaves of the plant 
and then moved to a different location within the plant. 
Furthermore, herbicide activity can be selective or non-
selective. Selective herbicides kill unwanted plants with-
out critical damage to the preferred plants. On the other 
hand, non-selective herbicides kill or injure all plants pre-
sent. This study assessed seventeen different herbicides, 
employed to protect a range of crops, by targeting different 
weed species (Table 1).

2.1.2  |  Fungicide group

Fungicides can work preventatively or curatively, by 
either preventing the fungus from infecting the plant, 
or by partially or entirely treating an existing fungal in-
festation (Tleuova et al., 2020; Zhang et al., 2020). Like 
herbicides, they can act as contact fungicides, prevent-
ing the fungus from entering the plant, or as systemic 
fungicides, which are internalized by the plant and are 
then moved to a different site within the plant. This 
study assessed the transmission risk of eight different 
fungicides (Table 1).

2.1.3  |  Insecticide group

Chemical insecticides are employed to control harmful 
insects, as a result of either killing the insect or prevent-
ing it from doing destructive damage to plants. During 
the 1950s, the majority of insecticides operated from 
four different chemical groups (DDT and analogues, 
Organophosphates, Carbamates and Cyclodienes) using 
three modes of action (Sparks et al., 2019). These modes of 
action were inhibition of the acetylcholinesterase, modu-
lation of the voltage-gated sodium channel and blockage 
of the gamma-aminobutyric acid-gated chloride channel 
(Sparks et al., 2019). By 2019, this number had increased 
to 25 different modes of action based on 55 different chem-
ical classes (Swale, 2019). The current study assessed the 
transmission risk of three insecticides (Table 1). The num-
ber of insecticide studies included in our meta-analysis is 
low due to the small number of studies that fulfilled our 
criteria of (i) including an approved insecticide and (ii) re-
porting soil texture data.

2.2  |  Adsorption modelling

The manuscripts that fulfilled the selection criteria of 
this study (Supporting information Excel file) modelled 
their experimental data using the Freundlich adsorption 
isotherm, with some also reporting the parameters of the 
Langmuir adsorption isotherm. The main assumption of 
the Langmuir adsorption isotherm model is monolayer 
adsorption, so all potential adsorption sites are treated 
equivalently (Langmuir, 1918). The Freundlich adsorp-
tion model can better describe adsorption on a heteroge-
neous surface (Freundlich, 1907) and is commonly used 
to describe pesticide adsorption in soil (Hiller et al., 2012; 
Papadopoulou et al., 2016; Wang et al., 2020), implying 
that monolayer adsorption is not representative of pesti-
cide adsorption in soil. To facilitate comparative analysis 
within this paper, only the Freundlich model was used 
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T A B L E  1   Applications, target pests and physicochemical properties of selected pesticidesa

Pesticide Crop/Site Target pest MW SW

Log 
KOW DT50 lab

Herbicide

2,4-D Cereals, grass, amenity use Broad-leaved weeds 221.04 24,300 −0.82 4.4

Bensulfuron-methyl Cereals Weeds, sedges 410.4 67 0.79 77

Bentazone Cereals, vegetables Annual weeds 240.3 7112 −0.46 20

Chlorotoluron Cereals, vegetables, fruit Broad-leaved weeds, grasses 212.68 74 2.5 45

Dimethenamid-P Vegetables, vineyards Broad-leaved weeds, grasses 275.8 1499 1.89 12.1

Ethofumesate Beet, vegetables Broad-leaved weeds, grasses 286.34 50 2.7 21.6

Glyphosate Agriculture, horticulture, 
amenity use

Broad-leaved weeds, grasses 169.1 10,500 −3.2 15

Isoxaflutole Crops Broad-leaved weeds, grasses 359.32 6.2 2.34 0.9

Lenacil Beet, vegetables, fruit Broad-leaved weeds, grasses 234.29 2.9 1.69 49.7

MCPA Cereals, grass Broad-leaved weeds, rushes 200.62 29,390 −0.81 24

Mecoprop-P Cereals, grass, amenity use Broad-leaved weeds 214.65 250,000 −0.19 5.24

Metamitron Beet crops Broad-leaved weeds, grasses 202.21 1770 0.85 19

Metribuzin Cereals, vegetables Broad-leaved weeds, grasses 214.29 10,700 1.75 7.03

Metsulfuron-methyl Cereals, land removed from 
production

Broad-leaved weeds 381.36 2790 −1.87 23.2

Pendimethalin Cereals, vegetables, 
vineyards

Broad-leaved weeds, grasses 281.31 0.33 5.4 182.3

Phenmedipham Beet, vegetables Broad-leaved weeds 300.31 1.8 2.7 12

Terbuthylazine Cereals, vegetables, non-crop 
sites

Broad-leaved weeds, grasses, 
slime-forming algae

229.71 6.6 3.4 72

Fungicide

Azoxystrobin Cereals, vegetables Broad-spectrum 403.4 6.7 2.5 84.5

Metalaxyl Many agricultural crops Air- and 
soil-borne Peronosporales

279.33 8400 1.75 7.1

Metalaxyl-M Potatoes, vegetables Air- and soil-borne pathogens 279.33 26,000 1.71 6.5

Myclobutanil Perennial and annual crops, 
fruit, vines

Ascomycetes, Fungi 
Imperfecti and 
Basidiomycetes

288.78 132 2.89 365

Penconazole Vines, fruit, vegetables Fungal pathogens 284.18 73 3.72 117.2

Pyrimethanil Fruit, vegetables, nuts Fungal pathogens 199.28 110 2.84 50.9

Tebuconazole Cereals, vegetables, vines Foliar diseases 307.82 36 3.7 365

Thiabendazole Cereals, fruit, vegetables Post-harvest fungicide 201.25 30 2.39 1000

Insecticide

Abamectin Fruit, vegetables Selective acaricide, nematicide 
and insecticide

866.6 0.02 4.4 25.3

α-Cypermethrin Cereals, vegetables, beet, 
fruit, grassland

Broad spectrum 416.3 0.009 5.55 22.1

Deltamethrin Cereals, fruit, vegetables, 
public and industrial 
buildings

Wide range of sucking and 
chewing pests

505.2 0.0002 4.6 28.2

aPesticide properties database online (http://sitem.herts.ac.uk/areu/ppdb/en/index.htm). MW, Molecular weight (g mol−1); SW, water solubility (20°C, mg l−1); 
KOW, Octanol-water partition coefficient at pH 7, 20°C; DT50 lab, 50% dissipation time under laboratory conditions (days).

http://sitem.herts.ac.uk/areu/ppdb/en/index.htm
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for determination of the adsorption isotherm coefficients. 
The Freundlich isotherm model is:

where qe is the amount of adsorbate adsorbed at the equilib-
rium (mg g−1) and Ce is the concentration of the adsorbate 
at the equilibrium (mg L−1); KF is the Freundlich sorption 
capacity coefficient (mg  g−1 (mg  L−1)−1/n) and the expo-
nent n is the Freundlich exponent (dimensionless) (Lima 
et al., 2015). The adsorption of pesticides on soils can be 
described using the linear form of the Freundlich equation 
(Papazlatani et al., 2019):

The Freundlich sorption capacity coefficient KF 
(mg g−1 (mg L−1)−1/n) represents the pesticide affinity for 
soil, with a high KF value indicating a stronger adsorption 
for the pesticide and also suggesting a lower mobility of 
the pesticide in the soil (Wang et al., 2020).

2.3  |  Pesticide transport 
potential ranking

The movement of pesticides from the target crop through 
the soil and to the water receptor is a function of soil per-
meability (m  s−1), the adsorption capacity of each soil 
texture for the investigated pesticide (g  m−3), soil half-
life of the pesticide (DT50, days) and the pesticide solu-
bility in water (Sw; mg  L−1). In order to establish a soil 
texture-specific transport potential risk ranking for each 
of the pesticide groups examined in this study, a ranking 
system incorporating each of these parameters was devel-
oped with the highest value indicative of the greatest risk 
of transmission to receiving waters. The permeability of 
soils is well documented and was ranked according to soil 
texture (USDA, 2022). Soil adsorption values were gener-
ated from the median value for each pesticide/soil texture 
association reported in the literature (Supplementary 
Information, Excel file and Table S1). The water solubility 
and soil half-life values were obtained from the Pesticide 
Properties DataBase (Tables S2 and S3, respectively; Lewis 
et al., 2016). Using this rubric, each parameter was inde-
pendently ranked from one to twelve, where twelve was 
considered to be the highest risk for pesticide mobility 
through soil to surface and groundwater bodies, that is 
high permeability soils, low pesticide adsorption capacity, 
high soil half-life and high water solubility. In this study, 
high permeability soils were considered to be most at risk 
for surface and groundwater pollution. If surface water 
processes were only considered, low permeability soils, 

which would have large surface runoff potential relative 
to surface flow, would be considered to be most at risk. 
Finally, these independent risk values were combined 
(with equal weighting) to give a final risk ranking for each 
pesticide across all soil textures, but also for all of the pes-
ticides within an individual soil texture classification.

3   |   RESULTS AND DISCUSSION

3.1  |  Variances in adsorption as a 
function of soil texture

Table 2 shows the potential pesticide transmission risks 
as a function of water solubility, soil half-life, adsorption 
by soil of the pesticide and also soil texture. The poten-
tial transmission risk can be quantified either on the basis 
of soil texture or pesticide type, with the highest score in 
each case being the most transmissible.

It is unfortunate that there are not complete adsorp-
tion isotherm data studies across the soil texture triangle 
for each of the selected herbicides, fungicides and insec-
ticides. These data would facilitate a better understanding 
of the potential pesticide transmission risk across all soil 
textures. Given the current findings, it is impossible to as-
sess the potential transmission risk of pesticides in silt or 
sandy clay, as no data are available for silt and only limited 
data are available for silty clay textures.

The highest potential transmission risk ranking for 
each individual pesticide across all herbicides, fungicides 
and insecticides shows that the soil textures resulting in 
highest transmission risks are sandy loam and sand, with 
nineteen of the highest rankings being in one of these 
two soil textures (Table 2). These two soil textures have 
low clay content (<20%), implying that a high clay con-
tent is important in the retention of pesticides within the 
soil, as previously reported (García-Delgado et al., 2020; 
Ren et al., 2018; Vitoratos et al., 2016). This is in agree-
ment with Komárek et al. (2010), who highlighted that 
the possible factors influencing pesticide adsorption were 
physico-chemical properties of the pesticides and soil 
properties, such as particle size, soil organic matter and 
clay content. Komárek et al. (2010) also state that gener-
alizing the behaviour of fungicides in soil is difficult to 
predict, given the different sorption, mobility and toxicity 
properties each will have, which is inferred from their dif-
ferent chemical structures. ElGouzi et al. (2012) showed, 
in their work on adsorption of phenylurea pesticides by 
Mediterranean soils, that soils with relatively high clay 
content were better at pesticide retention. García-Delgado 
et al., (2020) suggest that the addition of organic amend-
ments to soils, such as spent mushroom substrate, com-
post, manure or sewage sludge, is an effective method of 

(1)qe = KFC
1∕n
e

(2)logqe = log KF + 1∕n ∗ logCe
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immobilizing pesticides in the soil as a result of increas-
ing the organic content of the soil. Furthermore, both of 
these soil textures have a high sand content (>45%), which 
would suggest that soil textures having a high sand con-
tent are also susceptible to high potential transmission 
risk of pesticides.

The potential risk ranking values (Table 2) for the her-
bicide group range from 36 (for Chlorotoluron in sand) 
to 13 (for Isoxaflutole in silty clay). The majority of high 
values (>30), shown in red and orange, reside in the left 
hand side of Table 2. The soil textures in this group of 
sand, loamy sand, sandy loam, sandy clay loam, loam and 
sandy clay all have a sand content of ≥50%, except for the 
loam texture where the sand content is 25%. This would 
imply that there is a high risk of herbicide transmission 
if the soil contains a high sand content. Although limited 
adsorption data are available in the literature for the three 
herbicides with the highest solubility (Mecoprop-P, MCPA 
and 2,4-D), the trends observed for other pesticides indi-
cate that it is likely that these herbicides would pose a high 

transmission risk in either sand or loamy sand textured 
soils.

There are two different ways that the data in Table 2 
can be interpreted. The data can be viewed from the point 
of view of the pesticide. Considering the herbicide chlo-
rotoluron, for example the potential risk ranking varies 
from 36 in sand to 17 in clay. Therefore, the soil textures 
most likely to transmit chlorotoluron may be identified. 
Alternatively, the data may be examined considering only 
soil texture. Within sandy loam soils, for example MCPA, 
Mecoprop-P, Bentazone, Metamitron and Metribuzin 
are some of the highest risk herbicides, with ranking 
values of 35, 34, 34, 35 and 34, respectively (Table 2). As 
Pendimethalin, also used for the removal of broad-leaved 
weeds from cereals (Table 1), has a much lower trans-
mission ranking value in sandy loam soils (24, Table 2), 
it might be more appropriate for selection when apply-
ing to this soil texture. In a similar manner, the choice of 
Terbuthylazine (14, Table 2) would be appropriate, when 
considering removing broad-leaved weeds and grasses 

T A B L E  2   Pesticide transmission risk rankingsa

aTotal transmission risk ranking = Risk rankings for Permeability +Adsorbency + Solubility +Half-life (Table S5). The higher the score, the higher the risk for 
transmission through soil to waterways. The colour of the ranking value indicates the likelihood of potential transmission risk, with red being most likely and 
green being least likely.

 Category Pesticide Sand
Loamy 
Sand

Sandy 
Loam

Sandy Clay 
Loam

Loam Sandy Clay Silt Loam Silt Clay Loam
Silty Clay 

Loam
Silty Clay Clay

2,4-D 30 26 25 24 22 22 20

Bensulfuron-methyl 23 19 17

Bentazone 34 32 30 29 27 26 25

Chlorotoluron 36 28 29 29 29 25 20 19 18 17

Dimethenamid-P 28

Ethofumesate 28 29 29 22 17

Glyphosate 28 26 27 23 22 18 16

Isoxaflutole 20 24 22 21 13

Lenacil 22

MCPA 35 33 31 23

Mecoprop-P 34

Metamitron 34 34 35 32 24

Metribuzin 34

Metsulfuron-methyl 35 33 30 27

Pendimethalin 24 22 19

Phenmedipham 21 23 27 17 21

Terbuthylazine 35 32 30 27 26 24 14

Azoxystrobin 32 29 27 25 22

Metalaxyl 38 36 33 26 25 23

Metalaxyl-M 30 30 25 30

Myclobutanil 42 18

Penconazole 33 33 31 28 28

Pyrimethanil 28

Tebuconazole 31 29

Thiabendazole 25

Abamectin 21 18 15 9

α-Cypermethrin 13

Deltamethrin 22 15

Herbicide

Fungicide

Insecticide



      |  7MCGINLEY et al.

from cereal and vegetable crops in clay soil, than any of 
the other herbicides in this study (16–27, Table 2).

In the case of the selected fungicides, the majority of 
high values (>30) reside in the left hand side of Table 2, 
Indeed, Metalaxyl-M has equally high potential trans-
mission risk rankings across the range of soil textures. 
Furthermore, transmission risks are available for most 
fungicides for sandy loam soils (Table 2). As the trans-
mission risk of Azoxystrobin was deemed to be the low-
est of the eight fungicides (Table 2), then the selection of 
Azoxystrobin for application on sandy loam soils could 
be proposed as a management tool to minimize the risk 
of fungicide transmission through soil to waterways. 
Specifically, Tebuconazole (27, Table 2) could be a suitable 
alternative to Metalaxyl or Metalaxyl-M (38 and 30, Table 
2) for the control of air-borne pathogens of vegetables 
grown in sandy loam soil (Table 1).

Of the three insecticides, Deltamethrin has the higher 
transmission risk rankings across all textures (Table 2). 
The transmission risk for Abamectin was much greater 
in sandy soils (21, Table 2) than in clay soils (9, Table 2), 
again demonstrating the potential for applying the pro-
posed transmission risk ranking scheme to pesticide se-
lection and management. Consideration of the reported 
transmission risk ranking, based on soil texture, crop and 
target pest, will contribute to decision-making practices 
for safer pesticide use.

4   |   CONCLUSIONS

Using soil texture-specific adsorption isotherm data for 
several groups of pesticides, their solubility in water, soil 
half-life and soil permeability, a transmission risk ranking 
was developed in this study. This is designed as a decision-
making support tool for agricultural land management, 
as it allows the agricultural sector to assess, either by soil 
texture or pesticide type, the risk of loss of pesticides to 
receptors. While this is a simple decision making sup-
port tool, rather than the more complicated and complex 
PRZM modelling approach (European Soil Data Centre, 
2022b), it offers a manageable choice for the end user. It 
is also useful for modelling the loss of pesticides to water 
and for identification of critical source areas for better 
land management. The risk ranking index demonstrated 
specific examples of support for decision making, such as 
that pendimethalin is a lower transmission risk option 
than MCPA, Mecoprop-P, Bentazone, Metamitron and 
Metribuzin in the removal of broad-leaved weeds from 
cereal crops. It has also illustrated that the fungicide, 
Azoxystrobin, is a lower transmission risk alternative to 
either Metalaxyl or Metalaxyl-M in sandy loam soil.

The risk ranking index indicated that there is a high risk 
of transmission of pesticides from soils containing <20% 
clay. Furthermore, the data suggest that, if the soil content 
contains more than 45% sand, then there is a much higher 
risk of potential pesticide transmission. There are several 
reports in the literature discussing the movement of pesti-
cides through soil. However, the aim of this paper was to 
develop a tool that the farmer could easily access to see if 
the pesticide of choice for the required job was environ-
mentally friendly or if there was a potential threat to the 
environment through its use. Further analysis should be 
undertaken to examine potential transmission risk rank-
ings of pesticides not selected in this review, across all soil 
textures.
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