Supplementary Material

Contents

1	The	ermochemistry										
2	Med	hanisr	n Performance	12								
	2.1	Metha	ne	13								
		2.1.1	Shock Tube	13								
		2.1.2	Jet-Stirred Reactor	35								
		2.1.3	Flame Speed	68								
	2.2	Ethan	e	69								
		2.2.1	Shock Tube	69								
		2.2.2	Jet-Stirred Reactor	80								
		2.2.3	Flame Speed	86								
	2.3	Ethyle	ene	87								
		2.3.1	Shock Tube	87								
		2.3.2	Jet-Stirred Reactor	102								
		2.3.3	Flow Reactor	135								
		2.3.4	Flame Speed	148								
		2.3.5	Flame Speciation	150								
	2.4	Acetyl	ene	153								
		2.4.1	Shock Tube	153								
		2.4.2	Flow Reactor	159								
		2.4.3	Flame Speed	167								
		2.4.4	Flame Speciation	168								
	2.5	Forma	ldehyde	171								
		2.5.1	Flow Reactor	171								

Preprint submitted to Fuel

August 15, 2013

	2.5.2	Flame Speciation
2.6	Acetal	dehyde
	2.6.1	Shock Tube
	2.6.2	Flow Reactor
2.7	Metha	nol
	2.7.1	Shock Tube
	2.7.2	Flow Reactor
	2.7.3	Flame Speed
2.8	Ethan	ol
	2.8.1	Shock Tube
	2.8.2	Jet-Stirred Reactor
	2.8.3	Flow Reactor
	2.8.4	Flame Speed
	2.8.5	Flame Speciation
2.9	Metha	ne/Ethane $\ldots \ldots 357$
	2.9.1	Shock Tube
	2.9.2	Jet-Stirred Reactor
	2.9.3	Flame Speed

1. Thermochemistry

The heats of formation at 298 K (H_f 298), entropies of formation (S₂₉₈) and heat capacities (C_P) at 300, 400, 500, 600, 800, 1000 and 1500 K contained in the thermochemistry file are included in Table 1.

SPECIES	$\mathrm{H}_{f~298}$	S ₂₉₈	$C_p 300$	$C_p 400$	$C_p 500$	$C_p 600$	$C_p 800$	$C_p 1000$	$C_p 1500$
Н	52.10	27.42	4.97	4.97	4.97	4.97	4.97	4.97	4.97
H_2	0.00	31.23	6.89	7.00	7.00	6.99	7.08	7.21	7.73
Ο	59.55	38.49	5.23	5.13	5.08	5.05	5.02	5.00	4.98
O_2	0.00	49.03	7.02	7.20	7.43	7.67	8.07	8.34	8.72
ОН	8.91	43.91	7.14	7.07	7.05	7.06	7.15	7.34	7.88
OH*	101.55	43.88	7.15	7.10	7.07	7.06	7.13	7.33	7.87
H_2O	-57.80	45.13	8.03	8.19	8.42	8.68	9.26	9.87	11.31
N_2	0.00	45.80	6.96	7.00	7.07	7.19	7.51	7.81	8.31
HO_2	2.94	54.76	8.35	8.89	9.46	9.99	10.77	11.38	12.48
H_2O_2	-32.48	56.06	10.15	11.09	11.99	12.79	13.99	14.95	16.59
Ar	0.00	37.01	4.97	4.97	4.97	4.97	4.97	4.97	4.97
$\rm CH_2O$	-26.09	52.28	8.47	9.36	10.44	11.52	13.37	14.82	16.93
СО	-26.42	47.24	6.96	7.02	7.12	7.27	7.62	7.93	8.40
$\rm CO_2$	-94.05	51.10	8.89	9.86	10.66	11.32	12.29	12.98	13.91
HCO	10.11	53.60	8.29	8.75	9.29	9.84	10.85	11.66	12.94
$\rm HO_2CHO$	-67.41	73.87	15.22	17.67	19.71	21.39	23.91	25.57	27.64
O_2 CHO	-31.30	74.09	13.30	14.75	16.04	17.18	19.05	20.45	22.47
НОСНО	-90.48	59.07	9.90	11.50	13.09	14.50	16.57	18.12	20.39
НОСО	-43.34	60.17	10.45	11.81	12.99	13.98	15.39	16.39	17.81
OCHO	-31.00	60.93	10.05	11.04	12.10	13.09	14.71	15.98	17.92
$\mathrm{HOCH}_2\mathrm{O}_2\mathrm{H}$	-76.03	75.92	18.70	22.12	24.94	27.23	30.62	32.86	35.98
$\mathrm{HOCH}_2\mathrm{O}_2$	-42.22	74.79	16.64	19.21	21.35	23.14	25.89	27.84	30.90
$\rm OCH_2O_2H$	-24.06	74.46	17.71	20.81	23.33	25.36	28.26	30.09	32.45
$\mathrm{HOCH}_2\mathrm{O}$	-42.16	66.11	13.07	14.75	16.38	17.92	20.66	22.84	26.03

CH_3OH	-48.04	57.52	10.28	12.07	14.07	15.98	19.00	21.38	25.07
CH_2OH	-4.06	58.36	11.35	12.79	14.16	15.36	17.08	18.44	20.59
CH_3O	5.02	55.99	10.20	12.05	13.86	15.47	17.86	19.70	22.25
$\rm CH_3O_2H$	-30.29	65.94	16.01	18.83	21.17	23.02	25.52	27.50	30.65
$\rm CH_3O_2$	2.92	64.50	11.99	14.07	16.08	17.90	20.79	22.91	26.13
$\rm CH_2O_2H$	15.00	67.42	15.81	17.67	19.33	20.79	23.18	24.92	27.24
CH_4	-17.83	44.54	8.55	9.69	11.11	12.60	15.31	17.62	21.62
CH_3	35.06	46.37	9.20	9.98	10.75	11.50	12.86	14.09	16.25
CH_2	93.50	46.47	8.37	8.73	9.07	9.39	9.97	10.59	11.77
$\mathrm{CH}_2(\mathrm{S})$	102.48	45.22	8.08	8.33	8.66	9.04	9.83	10.57	11.91
СН	142.40	43.75	6.97	6.99	7.03	7.11	7.37	7.71	8.57
CH^*	208.55	43.72	6.95	7.00	7.05	7.11	7.37	7.78	8.75
С	171.28	37.79	4.98	4.97	4.97	4.97	4.97	4.97	4.97
C_2H_6	-20.04	54.78	12.60	15.57	18.58	21.36	25.80	29.32	34.71
C_2H_5	28.92	59.09	12.06	14.71	17.11	19.28	22.95	25.79	30.18
C_2H_4	12.55	52.42	10.29	12.58	14.88	16.95	20.05	22.49	26.19
C_2H_3	70.88	55.85	10.09	11.81	13.46	14.90	17.06	18.78	21.50
C_2H_2	54.54	48.02	10.55	12.01	13.08	13.89	15.16	16.23	18.14
C_2H	135.77	50.98	10.05	10.54	10.88	11.19	11.90	12.56	13.88
CH_3CHO	-39.72	63.09	13.26	15.78	18.29	20.58	24.16	26.91	30.96
CH_3CO	-2.46	63.92	12.17	14.27	16.30	18.13	20.99	23.19	26.34
$\rm CH_2CHO$	3.05	63.15	13.03	15.49	17.66	19.45	21.97	23.83	26.59
$\rm CH_2CO$	-11.52	57.66	12.22	14.02	15.48	16.69	18.59	20.04	22.35
HCCO	42.61	58.89	11.97	13.27	14.21	14.93	16.08	16.93	18.27
НССОН	22.30	59.64	13.80	15.44	16.67	17.64	19.19	20.40	22.43
$\rm CH_3CO_3H$	-80.49	77.24	20.55	24.40	27.64	30.35	34.52	37.42	41.51
$\rm CH_3CO_3$	-42.35	77.37	19.97	23.01	25.58	27.74	31.09	33.48	37.05
$\rm CH_3CO_2$	-51.38	64.94	14.78	17.74	20.26	22.41	25.78	28.20	31.77
C_2H_5OH	-56.15	67.06	15.67	19.31	22.84	25.96	30.59	34.15	39.53
PC_2H_4OH	-5.70	69.72	16.47	19.38	22.06	24.40	27.94	30.70	35.00

SC_2H_4OH	-12.91	69.07	15.36	18.30	21.07	23.48	27.16	30.02	34.52
C_2H_5O	-3.25	66.36	15.91	18.93	21.79	24.34	28.35	31.44	36.01
$O_2C_2H_4OH$	-41.29	86.96	21.80	25.33	28.43	31.17	35.67	39.14	44.68
$C_2H_5O_2H$	-39.14	74.47	20.09	24.22	27.75	30.75	35.47	38.90	44.17
$C_2H_5O_2$	-6.86	73.85	18.27	22.14	25.71	28.75	33.14	36.37	41.03
$C_2H_4O_2H$	11.86	82.15	19.77	22.84	25.42	27.61	30.99	33.42	37.14
$\rm CH_3 CHO_2 H$	4.76	78.29	20.22	23.37	26.09	28.46	32.27	35.12	39.56
C_2H_4O1-2	-12.58	58.05	11.44	14.71	17.92	20.71	24.62	27.54	31.71
C_2H_3O1-2	39.31	60.35	10.98	13.71	16.33	18.56	21.59	23.83	27.04
$\rm CH_3COCH_3$	-51.34	70.66	17.81	21.78	25.69	29.21	34.63	38.76	44.84
CH_3COCH_2	-7.97	73.50	17.47	20.98	24.28	27.17	31.57	34.91	39.98
$\rm CH_3COCH_2O_2$	-35.38	92.65	25.67	29.37	32.69	35.64	40.59	44.46	50.54
$\rm CH_3COCH_2O_2$	-71.49	92.43	27.71	32.27	36.25	39.71	45.29	49.45	55.63
CH_3COCH_2O	-33.71	80.46	21.23	25.02	28.43	31.48	36.55	40.42	46.11
C_2H_3CHO	-20.32	67.40	17.08	20.88	24.03	26.64	30.59	33.34	37.42
C_2H_3CO	11.58	66.01	16.88	19.96	22.44	24.44	27.37	29.42	32.78
C_2H_5CHO	-44.25	69.03	18.07	22.25	26.21	29.73	35.18	39.32	45.51
C_2H_5CO	-7.85	75.12	16.27	19.59	22.94	25.99	30.70	34.31	39.70
$\rm CH_2\rm CH_2\rm CHO$	3.64	76.16	19.37	21.83	24.66	27.68	33.64	38.74	45.39
CH_3CHCHO	-5.56	70.38	13.99	19.16	23.77	27.85	34.61	39.73	46.16
$\rm CH_3OCH_3$	-44.00	63.90	15.51	18.77	21.82	24.64	29.54	33.43	39.34
$\rm CH_3OCH_2$	0.10	67.78	14.50	17.35	19.95	22.30	26.31	29.46	34.44
$\rm CH_3OCH_2O_2$	-36.90	83.11	21.38	25.65	29.26	32.30	37.00	40.37	45.46
$\rm CH_2OCH_2O_2H$	-26.10	86.76	22.66	27.44	31.36	34.56	39.24	42.28	46.27
$\rm CH_3OCH_2O_2H$	-70.21	84.26	23.43	28.55	32.81	36.35	41.68	45.32	50.51
$\rm CH_3OCH_2O$	-34.47	73.95	18.32	21.65	24.67	27.40	32.01	35.56	40.81
$O_2CH_2OCH_2O$	-63.11	102.09	29.23	35.42	40.27	44.05	49.20	52.33	56.66
HO_2CH_2OCHO	-111.88	87.08	23.54	28.80	33.15	36.70	41.84	45.01	48.38
OCH_2OCHO	-76.96	75.61	18.47	21.67	24.62	27.27	31.63	34.71	38.17
$HOCH_2OCO$	-82.59	81.62	19.83	22.28	24.60	26.74	30.41	33.18	36.77

CH_3OCHO	-86.90	68.42	14.97	17.94	20.97	23.75	28.02	31.22	35.90
CH_3OCO	-39.05	69.02	15.86	18.23	20.45	22.44	25.63	28.01	31.56
$\rm CH_2OCHO$	-37.42	70.63	14.64	17.57	20.24	22.62	26.52	29.28	32.46
He	0.00	30.15	4.97	4.97	4.97	4.97	4.97	4.97	4.97
C_3H_8	-25.02	64.61	17.67	22.34	26.84	30.85	37.01	41.78	48.99
$NC_{3}H_{7}$	24.22	69.42	17.12	21.14	24.95	28.33	33.53	37.59	43.91
$IC_{3}H_{7}$	21.56	69.34	15.73	19.52	23.37	26.91	32.52	36.89	43.58
C_3H_6	4.78	63.73	15.47	19.17	22.71	25.88	30.78	34.56	40.26
C_3H_5 -A	40.91	61.88	15.22	18.99	22.28	25.03	29.06	32.12	36.75
C_3H_5 -T	60.60	65.26	15.57	18.94	21.93	24.54	28.73	31.88	36.81
C_3H_5 -S	64.10	64.66	15.39	18.93	22.01	24.64	28.79	31.90	36.79
C_3H_4 -A	45.63	58.18	14.13	17.11	19.77	22.04	25.40	27.99	31.90
C_3H_4 -P	44.32	59.34	14.57	17.28	19.70	21.80	25.12	27.71	31.71
C_3H_3	84.01	61.34	15.56	17.83	19.55	20.92	23.11	24.81	27.54
C_3H_5O	22.15	73.00	17.62	21.52	24.92	27.87	32.59	36.03	41.06
$C_3H_6OOH1-3$	4.17	87.41	25.05	30.29	34.77	38.60	44.65	49.04	55.50
$C_3H_6OOH1-2$	3.07	91.34	24.20	28.89	32.97	36.51	42.25	46.55	53.30
$C_3H_6OOH_2-1$	1.00	88.11	26.02	31.08	35.29	38.78	44.14	47.97	54.08
$C_3H_6OOH_2-2$	1.00	88.11	26.02	31.08	35.29	38.78	44.14	47.97	54.08
$C_3H_6OOH1-2$	-35.60	100.30	32.12	38.36	43.55	47.88	54.48	59.15	66.08
$C_3H_6OOH1-3$	-30.93	100.96	31.61	37.66	42.78	47.10	53.83	58.68	65.85
$C_3H_6OOH_2-1$	-35.60	100.30	32.12	38.36	43.55	47.88	54.48	59.15	66.08
$NC_{3}H_{7}O$	-8.48	72.19	19.61	24.48	29.05	33.06	39.10	43.68	50.50
$\rm IC_3H_7O$	-13.14	71.01	20.42	25.58	29.90	33.50	39.00	42.87	48.63
$\rm NC_3H_7O_2H$	-43.41	87.86	23.36	28.81	34.06	38.65	45.35	50.39	57.95
$\rm IC_3H_7O_2H$	-49.50	81.96	26.34	32.38	37.49	41.79	48.48	53.28	60.40
$NC_3H_7O_2$	-10.15	77.64	21.61	26.69	31.71	36.21	43.00	48.08	55.56
$\rm IC_3H_7O_2$	-16.10	80.81	24.29	29.48	33.93	37.73	43.79	48.29	55.29
C_3H_6O1-3	-19.38	65.65	14.86	19.73	24.60	28.89	35.04	39.60	46.14
C_3H_6O1-2	-22.17	67.28	17.45	22.12	26.48	30.25	35.79	39.93	45.95

C_3 KET12	-67.64	90.75	26.84	32.54	37.27	41.18	47.07	51.11	56.80
C_3 KET13	-64.01	90.85	27.31	32.28	36.54	40.18	45.93	50.11	56.22
$C_3 KET21$	-71.32	90.94	27.10	31.82	35.98	39.62	45.54	49.93	56.20
$C_{3}H_{5}1$ -2,3O	-20.00	104.98	33.45	39.90	45.21	49.55	56.01	60.37	66.48
$C_{3}H_{5}2$ -1,3O	-17.98	103.80	33.05	39.02	44.08	48.35	54.95	59.59	66.07
C_3H_6OH	-14.78	80.97	19.36	23.88	27.91	31.46	37.33	41.75	48.38
$\mathrm{HOC}_{3}\mathrm{H}_{6}\mathrm{O}_{2}$	-49.60	94.95	27.46	32.69	37.17	41.01	47.14	51.72	59.00
CH ₃ CHCO	-19.61	67.80	17.93	21.39	24.26	26.64	30.28	32.88	36.95
AC_3H_5OOH	-14.23	82.92	24.12	28.78	32.74	36.10	41.37	45.17	50.89
C_2H_3OOH	-7.59	72.50	18.43	22.06	25.07	27.55	31.25	33.75	37.25
C_4H_{10}	-30.04	73.71	23.34	29.68	35.27	40.17	48.21	54.27	63.52
PC_4H_9	18.96	78.50	22.57	28.30	33.36	37.79	45.05	50.53	58.86
$\rm SC_4H_9$	16.31	79.52	21.81	27.37	32.37	36.84	44.27	49.92	58.31
C_4H_8-1	-0.01	72.98	20.55	25.40	30.13	34.46	41.39	46.61	54.37
C_4H_8-2	-2.67	70.82	21.04	25.86	30.55	34.80	41.54	46.70	54.44
$C_{4}H_{7}1-1$	58.76	74.40	20.09	24.63	28.85	32.55	38.25	42.65	49.39
C_4H_71-2	55.25	71.86	20.16	24.83	29.15	32.95	38.85	43.37	50.26
$C_{4}H_{7}1-3$	32.53	73.16	19.39	24.17	28.70	32.67	38.65	43.21	50.12
C_4H_71-4	48.90	75.85	20.35	24.99	29.37	33.21	39.00	43.44	50.22
C_4H_72-2	53.50	74.87	19.96	23.86	27.86	31.58	37.53	42.14	49.15
C_4H_6	26.33	66.41	18.33	23.15	27.34	30.90	36.41	40.48	46.76
$PC_4H_9O_2H$	-49.76	93.42	31.28	38.65	44.97	50.37	58.93	65.17	74.47
$\rm SC_4H_9O_2H$	-54.43	92.75	31.85	39.36	45.73	51.13	59.55	65.63	74.68
$PC_4H_9O_2$	-16.36	92.27	29.30	35.75	41.37	46.25	54.18	60.15	69.34
$SC_4H_9O_2$	-21.03	91.60	29.80	36.46	42.17	47.06	54.86	60.64	69.57
PC_4H_9O	-14.23	84.75	25.43	32.06	37.79	42.72	50.54	56.22	64.57
SC_4H_9O	-18.12	81.80	25.75	32.44	38.22	43.19	51.05	56.68	64.66
C_4H_7O	12.92	80.33	23.19	29.39	34.57	38.88	45.40	49.86	56.18
C_4H_8O1-2	-27.60	76.22	22.88	29.54	35.18	39.95	47.37	52.67	60.58
C_4H_8O1-3	-27.66	73.66	21.77	28.51	34.32	39.31	47.15	52.71	60.18

C_4H_8O1-4	-43.63	73.89	19.26	26.07	32.06	37.30	45.71	51.76	59.70
$C_4H_8O_2-3$	-31.18	72.36	23.60	30.44	36.12	40.83	47.98	52.95	60.12
PC_4H_8OH	-19.33	90.65	25.00	31.04	36.38	41.09	48.76	54.45	62.80
$\rm SC_4H_8OH$	-21.85	87.70	25.04	31.48	36.90	41.46	48.51	53.55	61.22
$C_4H_8OH-1O_2$	-54.61	104.37	32.97	39.67	45.41	50.35	58.21	64.07	73.27
$C_4H_8OH-2O_2$	-58.98	102.37	33.46	40.44	46.34	51.32	59.10	64.78	73.67
$C_4H_8OOH1-1$	-7.55	98.76	31.59	37.71	43.14	47.92	55.72	61.49	69.72
$C_4H_8OOH1-2$	-1.86	98.94	29.36	35.83	41.40	46.17	53.78	59.43	68.24
$C_4H_8OOH1-3$	-3.41	97.86	29.68	36.28	42.02	46.99	54.95	60.75	69.08
$C_4H_8OOH1-4$	-0.76	96.83	30.52	37.28	43.06	47.99	55.76	61.42	69.80
$C_4H_8OOH_2-1$	-5.43	96.17	31.04	37.97	43.82	48.75	56.40	61.88	70.02
$C_4H_8OOH_2-2$	-13.41	99.48	30.81	36.70	41.93	46.56	54.21	60.00	68.71
$C_4H_8OOH_2-3$	-8.08	97.19	30.28	37.04	42.85	47.81	55.64	61.30	69.56
$C_4H_8OOH_2-4$	-5.43	96.17	31.04	37.97	43.82	48.75	56.40	61.88	70.02
$C_4H_8OOH1-2$	-40.53	109.72	37.54	45.29	51.79	57.22	65.57	71.51	80.39
$C_4H_8OOH1-3$	-40.53	109.72	37.54	45.29	51.79	57.22	65.57	71.51	80.39
$C_4H_8OOH1-4$	-35.86	110.38	37.17	44.65	51.01	56.41	64.88	71.03	80.15
$C_4H_8OOH_2-1$	-40.53	109.72	37.54	45.29	51.79	57.22	65.57	71.51	80.39
$C_4H_8OOH_2-3$	-45.20	109.05	38.52	46.36	52.84	58.20	66.33	72.05	80.65
$C_4H_8OOH_2-4$	-40.53	109.72	37.54	45.29	51.79	57.22	65.57	71.51	80.39
NC_4KET12	-72.57	100.17	32.31	39.50	45.52	50.53	58.17	63.49	71.12
$NC_4 KET13$	-73.61	99.61	33.34	39.99	45.60	50.34	57.69	62.96	70.76
$NC_4 KET14$	-68.94	100.27	32.84	39.27	44.79	49.51	56.99	62.46	70.51
$NC_4 KET21$	-76.64	100.54	33.24	39.31	44.59	49.18	56.60	62.15	70.42
$NC_4 KET23$	-80.02	99.08	31.59	38.84	44.93	50.02	57.82	63.27	71.04
NC_4KET24	-76.39	99.19	32.09	38.61	44.22	49.03	56.68	62.27	70.46
$C_2H_5COCH_3$	-57.31	81.27	24.23	29.04	33.71	37.97	44.88	50.15	58.11
$C_2H_5COCH_2$	-14.58	80.72	24.49	29.81	34.39	38.33	44.59	49.18	55.97
$\rm CH_2\rm CH_2\rm CO\rm CH$	-7.88	85.86	23.40	28.31	32.66	36.50	42.82	47.64	54.95
$CH_3CHCOCH_3$	-17.08	78.70	22.83	28.21	32.88	36.93	43.43	48.24	55.35

$C_2H_3COCH_3$	-30.40	78.20	21.23	26.36	30.77	34.55	40.53	44.88	51.30
CH ₃ CHOOCOC	-45.08	100.17	30.13	36.44	41.73	46.15	52.98	57.88	65.44
CH ₂ CHOOHCO	-32.18	103.37	31.41	37.94	43.34	47.81	54.53	59.17	65.91
NC ₃ H ₇ CHO	-49.27	78.24	22.94	28.79	34.36	39.29	46.74	52.23	60.11
$NC_{3}H_{7}CO$	-12.53	83.28	24.02	28.91	33.21	36.99	43.16	47.81	54.82
C_3H_6CHO-1	-0.43	85.57	24.08	28.96	33.25	37.02	43.16	47.79	54.78
C_3H_6CHO-2	-3.08	86.60	23.28	28.03	32.30	36.10	42.42	47.24	54.35
C_3H_6CHO-3	-9.63	79.79	23.58	28.85	33.43	37.39	43.73	48.40	55.34
C_2H_5CHCO	-24.37	77.60	23.04	28.23	32.54	36.11	41.56	45.40	51.31
SC_3H_5CHO	-28.19	75.99	22.27	27.41	31.76	35.44	41.16	45.26	51.38
$SC_{3}H_{5}CO$	2.71	74.60	22.12	26.49	30.15	33.22	37.96	41.37	46.61
IC_4H_{10}	-32.26	70.62	23.21	29.58	35.58	40.82	48.69	54.67	63.54
IC_4H_9	17.63	72.82	23.56	29.24	34.39	38.84	45.65	50.90	59.03
TC_4H_9	13.15	77.05	19.79	24.96	30.19	35.01	42.62	48.49	57.37
IC_4H_8	-4.20	68.70	20.66	26.18	31.26	35.66	42.24	47.22	54.65
IC_4H_7	32.89	71.89	19.74	24.74	29.23	33.09	38.90	43.33	50.13
$\rm IC_4H_9O_2$	-18.60	89.58	29.05	35.69	41.43	46.39	54.36	60.30	69.42
$TC_4H_9O_2$	-25.43	87.93	29.34	36.03	42.00	47.06	54.54	60.14	68.60
$TC_4H_8O_2H$ -I	-7.50	92.81	31.54	38.20	43.77	48.42	55.58	60.67	68.57
$\rm IC_4H_8O_2H-I$	-3.00	94.15	30.32	37.21	43.08	48.07	55.90	61.54	69.86
$IC_4H_8O_2H$ -T	-6.10	97.79	30.09	35.94	41.07	45.58	52.94	58.53	67.30
$\rm IC_4H_8O$	-31.48	71.25	23.39	30.23	35.94	40.69	47.96	53.08	60.80
$\rm CC_4H_8O$	-25.53	69.91	20.47	27.82	34.00	39.18	47.14	52.73	60.95
TC_4H_9O	-20.77	73.90	25.48	32.29	38.46	43.79	51.77	57.43	65.39
IC_4H_9O	-15.55	76.25	24.45	31.18	37.46	42.95	51.24	57.21	65.67
$\rm IC_4H_9O_2H$	-52.00	90.73	31.10	38.59	45.00	50.46	59.06	65.29	74.52
$\mathrm{TC}_4\mathrm{H}_9\mathrm{O}_2\mathrm{H}$	-57.62	84.67	32.78	40.17	46.63	52.06	60.07	66.05	75.20
$\rm IC_4H_7O$	13.91	80.56	23.77	28.96	33.49	37.42	43.74	48.41	55.37
$\rm IC_4H_8OH$	-24.10	88.50	25.35	30.72	35.64	40.09	47.66	53.56	62.54
$\rm IO_2C_4H_8OH$	-60.19	100.05	33.58	40.34	46.11	51.03	58.83	64.60	73.67

IC_3H_7CHO	-51.20	79.66	23.57	29.64	34.90	39.43	46.67	51.96	59.79
TC_3H_6CHO	-13.50	76.58	24.14	29.29	33.76	37.63	43.86	48.51	55.61
IC_3H_6CHO	-2.20	83.08	22.80	28.26	32.98	37.04	43.51	48.22	55.15
$IC_{3}H_{7}CO$	-14.30	81.59	22.74	28.21	32.94	37.02	43.50	48.23	55.16
TC ₄ H ₈ OOH-I	-44.10	103.72	37.89	45.69	52.19	57.61	65.91	71.79	80.59
IC ₄ H ₈ OOH-I	-38.10	107.70	36.91	44.59	51.08	56.55	65.06	71.18	80.24
IC_4H_8OOH-T	-44.10	103.72	37.89	45.69	52.19	57.61	65.91	71.79	80.59
$IC_4 KETII$	-70.71	99.15	31.52	38.56	44.53	49.56	57.35	62.86	70.73
IC_4KETIT	-75.84	93.28	32.50	39.72	45.81	50.91	58.71	64.10	71.51
$\rm IC_4H_7OH$	-38.26	82.02	24.73	30.24	35.07	39.28	46.10	51.20	58.91
IC_4H_6OH	-2.16	80.26	24.19	29.63	34.25	38.18	44.32	48.76	55.43
IC_3H_5CHO	-27.34	74.65	23.18	28.32	32.61	36.20	41.71	45.61	51.52
IC_3H_5CO	4.56	73.26	23.00	27.39	31.02	34.00	38.52	41.71	46.70
TC_3H_6OCHO	-39.04	84.25	26.68	32.97	38.31	42.82	49.75	54.58	61.28
IC_3H_6CO	-28.06	75.35	24.27	28.96	32.92	36.26	41.48	45.29	51.24
$\rm IC_4H_7OOH$	-24.38	91.48	30.26	36.22	41.32	45.67	52.56	57.59	65.20
TC_3H_6OHCHO	-91.01	85.71	27.63	34.26	39.92	44.71	52.15	57.40	64.91
TC_3H_6OH	-24.40	76.94	20.50	24.97	28.79	32.06	37.24	41.06	47.12
IC_3H_5OH	-38.81	72.63	19.11	23.28	26.94	30.15	35.36	39.24	45.00
$TC_3H_6O_2CHO$	-39.73	93.50	30.47	36.84	42.27	46.88	54.07	59.18	66.46
$TC_3H_6O_2HCO$	-38.93	94.40	31.74	38.35	43.91	48.56	55.63	60.46	66.91
$IC_3H_5O_2HCH$	-26.83	96.70	31.82	38.41	43.96	48.59	55.63	60.44	66.90
$\rm CH_2\rm CCH_2\rm OH$	27.09	76.27	18.24	21.60	24.59	27.24	31.61	34.92	39.88
TC_4H_8CHO	-9.30	89.66	28.85	36.26	42.53	47.82	56.00	61.77	70.11
$O_2C_4H_8CHO$	-43.39	104.72	35.90	43.69	50.31	55.93	64.69	70.94	80.10
$O_2HC_4H_8CO$	-42.59	105.62	37.02	45.11	51.97	57.74	66.59	72.69	80.95
C_3H_5OH	-29.55	72.84	18.45	23.03	27.21	30.79	36.06	39.95	45.60
$\mathrm{TIC}_{4}\mathrm{H}_{7}\mathrm{Q}2\text{-}\mathrm{I}$	-31.87	110.84	40.01	47.29	53.37	58.44	66.17	71.58	79.58
$\mathrm{IIC}_{4}\mathrm{H}_{7}\mathrm{Q}2\text{-}\mathrm{I}$	-25.88	115.30	39.10	46.27	52.38	57.57	65.68	71.43	79.66
$\mathrm{IIC}_{4}\mathrm{H}_{7}\mathrm{Q}2\text{-}\mathrm{T}$	-30.68	117.13	38.99	45.23	50.83	55.80	64.01	70.15	78.92

$\mathrm{IIC}_{4}\mathrm{H}_{7}\mathrm{Q}_{2}\mathrm{-T}$	-35.02	83.13	28.44	36.52	43.55	49.66	59.49	66.78	77.82
$\rm CC_3H_4$	66.20	58.22	12.73	16.22	19.20	21.69	25.34	27.98	31.86
C_4H_4	68.00	66.58	17.50	21.46	24.54	27.01	30.88	33.71	37.98
C_4H_3 -I	119.20	70.19	19.86	22.54	24.55	26.15	28.72	30.62	33.56
C_4H_612	39.34	69.72	19.30	23.66	27.46	30.75	36.04	39.99	45.59
C_4H_2	111.01	61.20	21.26	22.17	23.04	23.85	25.32	26.59	29.00
C_4H_3 -N	127.10	67.99	17.74	20.93	23.31	25.16	28.00	30.12	33.36
C_4H_5 -N	85.40	69.47	18.76	22.97	26.46	29.35	33.80	37.10	42.26
C_4H_5 -I	77.40	68.47	18.11	22.42	26.01	29.00	33.57	36.98	42.24
CH ₃ CHCHCO	9.40	73.04	16.88	22.01	26.54	30.47	36.50	40.11	45.97
$CH_2CHCHCHO$	9.40	73.04	16.88	22.01	26.54	30.47	36.50	40.11	45.97
C_4H_6O25	-26.00	67.94	18.18	24.03	29.42	33.95	40.17	44.65	50.94
$C_2H_3CHOCH_2$	2.00	71.82	19.87	24.97	29.58	33.69	40.43	45.19	51.87
C_4H_5-2	74.31	71.22	18.84	22.43	25.65	28.51	33.15	36.34	41.55
C_4H_6-2	34.67	65.98	18.42	22.42	26.06	29.35	34.83	38.88	45.46
C_4H_6O23	-17.30	67.94	18.18	24.03	29.42	33.95	40.17	44.65	50.94
CH ₃ CHCHCHO	-25.70	79.62	18.29	24.07	29.17	33.59	40.42	44.55	50.64
C_4H_4O	-8.29	63.87	15.73	21.02	25.69	29.48	34.46	37.98	42.80
H_2CC	99.13	52.82	10.20	11.20	12.09	12.86	14.14	15.19	16.95
H_2C_4O	54.60	66.44	17.27	19.62	21.79	23.73	26.81	28.73	31.51
C_2H_2OH	31.79	62	13.28	15.99	18.2	19.97	22.56	24.35	26.96
O_2 CCHOOJ	-61.7	88.69	22.8	24.4	25.93	27.35	29.84	31.82	34.65
НСОН	23.33	55.43	9.83	12.88	15.17	16.85	18.89	19.84	20.65
C_2H_3OH	-29.38	61.76	14.84	18.07	20.65	22.7	25.68	27.71	31.13
O_2CH_2CHO	-21.01	79.98	17.37	21.66	25.1	27.84	31.78	34.4	38.4
HO ₂ CH ₂ CO	-19.64	81.79	20.6	24.15	27	29.27	32.5	34.54	37.2

¹Units are H_f kcal mol⁻¹, S cal K⁻¹ mol⁻¹, C_p cal K⁻¹ mol⁻¹

2. Mechanism Performance

Throughout the supplementary material symbols represent experimental data and lines represent model predictions. The lines are set out as follows: — AramcoMech 1.3 as presented in this work, — GRI-Mech 3.0 [1], --- Leeds Mech [2], \cdots MFC [3], $-\cdot$ – Ranzi [4], $-\cdot\cdot$ San Diego Mech [5], — USC II [6]. Not all of these mechanisms are validated against all of the species contained in this document and are included for comparative purposes.

2.1. Methane

2.1.1. Shock Tube

3.5% CH₄, 7.0% O₂, 89.5% Ar, $\Phi = 1.0$, $p_{av} = 6.24$ atm

3.5% CH₄, 15.3% O₂, 81.3% Ar, $\Phi = 0.45$, $p_{av} = 5.70$ atm

 $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

S1 Shock tube ignition delay times of methane/oxygen/argon mixtures. Symbols are experimental data [7] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - - Leeds Mech, … MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

3.5% CH₄, 5.6% O₂, 90.9% Ar, $\Phi = 1.25$, $p_{av} = 6.71$ atm

16.7% CH₄, 16.7% O₂ 66.6% Ar, Φ = 2.0, $p_{\rm av}$ = 1.82 atm

4.8% CH₄, 19.1% O₂ 76.1% Ar, Φ = 0.5, $p_{\rm av}$ = 1.97 atm

 I_{00}

2.0% CH₄, 19.6% O₂ 78.4% Ar, $\Phi = 0.2$, $p_{av} = 3.7$ atm

S2 Shock tube ignition delay times of methane/oxygen/argon mixtures Symbols are experimental data [9] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, … MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

Stote CH4, 19.2% O_2 77.0% H, $\Psi = 0.4$, p = 30.0 ulli 100 100 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 10^4 K / T (b)

27.3% CH₄, 18.2% O₂ 54.5% Ar, Φ = 3.0, p = 65.0 atm

3.8% CH₄, 19.2% O₂ 77.0% Ar, $\Phi = 0.4$, p = 100.0 atm

(f)

27.3% CH₄, 18.2% O₂ 54.5% Ar, Φ = 3.0, p = 130.0 atm

20.0% CH₄, 13.3% O₂ 66.7% Ar, Φ = 3.0, p = 170.0 atm

20.0% CH₄, 13.3% O₂ 66.7% N₂, Φ = 3.0, p = 40.0 atm

20.0% CH₄, 13.3% O₂ 66.7% N₂, Φ = 3.0, p = 75.0 atm

20.0% CH₄, 13.3% O₂ 66.7% N₂, Φ = 3.0, p = 85.0 atm

25

 $I = \frac{1}{7.50} + \frac{1}{8.00} + \frac{1}{8.50} + \frac{1}{9.00} + \frac{1}{9.50} + \frac{1}{10.00} + \frac$

27.3% CH₄, 18.2% O₂ 54.5% N₂, Φ = 3.0, p = 130.0 atm

27.3% CH₄, 18.2% O₂ 54.5% N₂, Φ = 3.0, p = 180.0 atm

S3 Shock tube ignition delay times of methane/air mixtures. Symbols are experimental data [8] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, -- Leeds Mech, · · · MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II. 27

 $I_{100}^{(1)} = \frac{1}{5.80 - 6.00 - 6.20 - 6.40 - 6.60 - 6.80}$

(b)

4.0% CH₄, 20.2% O₂, 75.81% N₂, $\Phi = 0.4$, p = 4.0 atm (1) f(t) = 100 f(t) = 100f(t

S4 Shock tube ignition delay times of methane/oxygen/argon mixtures. Symbols are experimental data [10] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, … MFC, - · - Ranzi, - · · San Diego Mech, — USC II. 29

1.0% CH₄, 2.0% CO, 2.0% O₂, 95.0% Ar, $\Phi = 1.0$, $p_{av} = 1.60$ atm

(b)

1.0% CH₄, 1.67% CO, 2.5% O₂, 95.33% Ar, $\Phi = 1.2$, $p_{av} = 1.59$ atm

S5 Shock tube ignition delay times of methane/air mixtures. Symbols are experimental data [11] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, · · · MFC, - · - Ranzi, - · · San Diego Mech,
USC II. 31

3.5% CH₄, 7.0% O₂, 89.5% Ar, Φ = 1.0, $p_{\rm av}$ = 3.04 atm

2.0% CH₄, 8.0% O₂, 90.0% Ar, Φ = 0.5, $p_{\rm av}$ = 9.21 atm

6.7% CH₄, 6.7% O₂, 86.6% Ar, Φ = 2.0, p_{av} = 11.81 atm

S6 Shock tube ignition delay times of methane/oxygen/argon mixtures. Symbols are experimental data [12] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S7 Jet-stirred reactor species profiles of methane/air mixtures. Symbols are experimental data [13] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, · · · MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S8 Jet-stirred reactor species profiles of methane/air mixtures. Symbols are experimental data [13] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, · · · MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S9 Jet-stirred reactor species profiles of methane/air mixtures. Symbols are experimental data [13] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S10 Jet-stirred reactor species profiles of methane/air mixtures. Symbols are experimental data [14] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S11 Jet-stirred reactor species profiles of methane/air mixtures. Symbols are experimental data [14] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S12 Jet-stirred reactor species profiles of methane/air mixtures. Symbols are experimental data [14] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S13 Jet-stirred reactor species profiles of methane/air mixtures. Symbols are experimental data [14] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

0.80% CH₄,20.00% CO₂, 0.80% H₂, 0.80% H₂, 6.67% O₂ in N₂, $\Phi = 0.3, p = 1.0 \text{ atm}, \tau = 0.12 \text{ s}$ 3.5E-002 3.0E-002 2.5E-002 1.5E-002 1.5E-002 5.0E-003 0.0E+000 960 980 1000 1020 1040 1060 1080 1100 1120 1140 T / K (f)

S14 Jet-stirred reactor species profiles of methane/air mixtures. Symbols are experimental data [14] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, – – – Leeds Mech, … MFC, – – Ranzi, – · · San Diego Mech, – USC II.

S15 Jet-stirred reactor species profiles of methane/air mixtures. Symbols are experimental data [14] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, – – – Leeds Mech, \cdots MFC, – \cdot – Ranzi, – \cdot · San Diego Mech, – USC II.

0.80% CH₄,20.00% CO₂, 0.80% H₂, 0.80% H₂, 6.67% O₂ in N₂, $\Phi = 0.3, p = 10.0$ atm, $\tau = 0.25$ s

0.80% CH₄,20.00% CO₂, 0.80% H₂, 0.80% H₂, 6.67% O₂ in N₂, $\Phi = 0.3, p = 10.0$ atm, $\tau = 0.25$ s

S16 Jet-stirred reactor species profiles of methane/air mixtures. Symbols are experimental data [14] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, – – – Leeds Mech, \cdots MFC, – \cdot – Ranzi, – \cdot · San Diego Mech, – USC II.

S17 Jet-stirred reactor species profiles of methane/air mixtures. Symbols are experimental data [14] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, – – – Leeds Mech, \cdots MFC, – \cdot – Ranzi, – \cdot · San Diego Mech, – USC II.

S18 Laminar flame speed measurements methane/air or methane/helium mixtures. Symbols are experimental data [15]-[24] lines are model predictions.
AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, ··· MFC, -·- Ranzi, -·· San Diego Mech, — USC II.

2.2. Ethane

2.2.1. Shock Tube

 $1.00\% C_2H_6$, $3.50\% O_2$, 95.50% Ar, $\Phi = 1.0$, $p_{av} = 2.32$ atm

(c) 0.20% C₂H₆, 0.70% O₂, 99.10% Ar, $\Phi = 1.00$, $p_{\rm av} = 2.05$ atm

0.20% C₂H₆, 7.00% O₂, 92.80% Ar, $\Phi = 0.10$, $p_{av} = 2.05$ atm

S19 Shock tube ignition delay times of ethane/oxygen/argon mixtures. Symbols are experimental data [25] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, … MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

2.00% C₂H₆, 7.00% O₂, 97.30% Ar, Φ = 1.00, $p_{\rm av}$ = 7.72 atm

1.00% C₂H₆, 7.00% O₂, 92.00% Ar, $\Phi = 0.50$, $p_{\rm av} = 7.10$ atm

 $3.44\% C_2 H_6, 6.02\% O_2, 90.54\% Ar, \Phi = 2.00, p_{av} = 8.52 atm$

S20 Shock tube ignition delay times of ethane/oxygen/argon mixtures. Symbols are experimental data [26] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

0.25% C₂H₆, 1.75% O₂, 98.0% Ar, $\Phi = 0.5$, $p_{\rm av} = 1.12$ atm

0.5% C₂H₆, 1.75% O₂, 97.75% Ar, $\Phi = 1.0$, $p_{av} = 1.16$ atm

(d)

1000 - 1000 - 10

2.0% C₂H₆, 7.0% O₂, 91.0% Ar, $\Phi = 1.0$, $p_{av} = 1.89$ atm

 I_{100} I_{1

S21 Shock tube ignition delay times of ethane/oxygen/argon mixtures. Symbols are experimental data [27] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, … MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

 $1.0\% C_2H_6$, $1.75\% O_2$, 97.25% Ar, $\Phi = 2.0$, $p_{av} = 1.0$ atm

S22 Jet-stirred reactor species profiles of methane/oxygen/nitrogen mixtures. Symbols are experimental data [28] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, – – Leeds Mech, · · · MFC, – · – Ranzi, – · · San Diego Mech, — USC II.

S23 Jet-stirred reactor species profiles of methane/oxygen/nitrogen mixtures. Symbols are experimental data [28] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ - Ranzi, $-\cdot\cdot$ San Diego Mech, — USC II.

S24 Laminar flame speed measurements ethane/air mixtures. Symbols are experimental data [15, 16] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

2.3. Ethylene

2.3.1. Shock Tube

(h)

S25 Shock tube ignition delay times of ethylene/air mixtures. Symbols are experimental data [29] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, · · · MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

3.5% C₂H₄, 3.5% O₂, 93.00% Ar, $\Phi = 3.0$, $p_{av} = 9.86$ atm

 $3.5\% C_2H_4$, $3.5\% O_2$, 93.00% Ar, $\Phi = 3.0$, $p_{av} = 18.03$ atm

1.75% C₂H₄, 5.25% O₂, 93.00% Ar, $\Phi = 1.0$, $p_{av} = 2.13$ atm

1.00% C₂H₄, 3.00% O₂, 96.00% Ar, $\Phi = 1.0$, $p_{av} = 2.03$ atm

1.00% C₂H₄, 3.00% O₂, 96.00% Ar, $\Phi = 1.0$, $p_{av} = 17.9$ atm

(h)

0.50% C₂H₄, 1.50% O₂, 98.00% Ar, $\Phi = 1.0$, $p_{av} = 9.80$ atm

S26 Shock tube ignition delay times of thylene/oxygen/argon mixtures. Symbols are experimental data [31] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

(b)

 C_2H_4 in Air, $\Phi = 1.0$, $p_{av} = 14.0$ atm

S27 Shock tube ignition delay times of ethylene/air mixtures. Symbols are experimental data [30] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, – – Leeds Mech, \cdots MFC, – \cdot – Ranzi, – \cdot · San Diego Mech, – USC II.

0.3% C₂H₄, 0.45% O₂ in N₂, Φ = 2.0, p = 1.0 atm, T = 1163 K

103

S28 Jet-stirred reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [32] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, – – Leeds Mech, … MFC, – \cdot – Ranzi, – \cdot San Diego Mech, — USC II.

S29 Jet-stirred reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [32] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ - Ranzi, $-\cdot$ San Diego Mech, — USC II.

S30 Jet-stirred reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [32] lines are model predictions. — AramcoMech 1.3, — GRI-Mech3.0, ---Leeds Mech, \cdots MFC, $-\cdot-$ Ranzi, $-\cdot\cdot$ San Diego Mech, — USC II. 111

0.15% C₂H₄, 0.225% O₂ in N₂, Φ = 2.0, p = 10.0 atm, T = 986 K

0.15% C₂H₄, 0.225% O₂ in N₂, Φ = 2.0, p = 10.0 atm, T = 986 K 6.0E-005 C2H2 5.0E-005 4.0E-005 Mole Fraction 3.0E-005 2.0E-005 1.0E-005 0.0E+000 0.50 1.50 2.00 1.00 2.50 Residence Time / s (d)

S31 Jet-stirred reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [32] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ - Ranzi, $-\cdot$ San Diego Mech, — USC II.

0.15% C₂H₄, 0.225% O₂ in N₂, Φ = 2.0, p = 10.0 atm, T = 986 K

S32 Jet-stirred reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [32] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, – – Leeds Mech, · · · MFC, – · – Ranzi, – · · San Diego Mech, — USC II.

S33 Jet-stirred reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [33] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech. \cdots MFC, $-\cdot$ - Ranzi, $-\cdot$ San Diego Mech, — USC II.

S34 Jet-stirred reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [33] lines are model predictions. — AramcoMech 1.3, - GRI-Mech 3.0, -- Leeds Mech, \cdots MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II.

S35 Jet-stirred reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [33] lines are model predictions. — AramcoMech 1.3, - GRI-Mech 3.0, -- Leeds Mech, \cdots MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II.

S36 Jet-stirred reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [33] lines are model predictions. — AramcoMech 1.3, - GRI-Mech 3.0, -- Leeds Mech, \cdots MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II.

S37 Jet-stirred reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [34] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ - Ranzi, $-\cdot$ San Diego Mech, — USC II.

S38 Jet-stirred reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [34] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ - Ranzi, $-\cdot$ San Diego Mech, — USC II.

S39 Jet-stirred reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [34] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ - Ranzi, $-\cdot\cdot$ San Diego Mech, — USC II.

S40 Flow reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [35] lines are model predictions. Model predictions are shifted in order to match 50% oxygen consumed. — AramcoMech 1.3, 137— GRI-Mech 3.0, – – – Leeds Mech, \cdots MFC, – \cdot – Ranzi, – \cdot - San Diego Mech, — USC II.

0.5% C₂H₄, 0.6% O₂ in N₂, Φ = 2.5, p = 10.0 atm, T = 850 K

S41 Flow reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [35] lines are model predictions. Model predictions are shifted in order to match 50% oxygen consumed. — AramcoMech 1.3, 140
— GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S42 Flow reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [36] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ - Ranzi, $-\cdot$ San Diego Mech, — USC II.

S43 Flow reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [36] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ – Ranzi, $-\cdot\cdot$ San Diego Mech, — USC II.

S44 Flow reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [36] lines are model predictions. — AramcoMech 1.3, - GRI-Mech 3.0, - – Leeds Mech, \cdots MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II.

S45 Laminar flame speed measurements ethylene/air mixtures. Symbols are experimental data [19, 24, 37, 38] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ - Ranzi, $-\cdot$ San Diego Mech, — USC II.

S46 Flame species profiles of ethylene/oxygen/argon mixtures. Experimental data has been shifted by 0.2054 cm which is within experimental uncertainty. Symbols are experimental data [39] lines are model predictions. — AramcoMech 1.3, - GRI-Mech 3.0, -- Leeds Mech, \cdots MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II. 152

2.4. Acetylene

2.4.1. Shock Tube

0.5% C₂H₂, 1.25% O₂, 98.25% Ar, $\Phi = 1.0$, $p_{av} = 1.85$ atm

0.5% C₂H₂, 2.54% O₂, 96.96% Ar, $\Phi = 0.49$, $p_{av} = 1.85$ atm

153

 $I_{100} = \frac{1}{7.00} = \frac{1}{7.50} = \frac{1}{8.00} = \frac{1}{8.50} = \frac{1}{9.00}$ (d)

S47 Shock tube ignition delay times of acetylene/oxygen/argon mixtures. Symbols are experimental data [40] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, – – Leeds Mech, · · · MFC, – · – Ranzi, – · · San Diego Mech, — USC II.

1.0% C₂H₂, 2.5% O₂, 96.5% Ar, Φ = 1.0, p_{av} = 1.85 atm

 $0.5\% C_2H_2$, 10.1% O_2 , 89.4% Ar, $\Phi = 0.12$, $p_{av} = 1.21$ atm

0.5% C₂H₂, 5.0% O₂, 94.5% Ar, $\Phi = 0.25$, $p_{av} = 1.18$ atm

0.5% C₂H₂, 2.6% O₂, 96.9% Ar, $\Phi = 0.48$, $p_{av} = 1.18$ atm

0.5% C₂H₂, 1.14% O₂, 98.36% Ar, Φ = 1.1, $p_{\rm av}$ = 1.21 atm

(h)

0.5% C₂H₂, 0.89% O₂, 98.61% Ar, Φ = 1.4, $p_{\rm av}$ = 1.25 atm

S48 Shock tube ignition delay times of acetylene/oxygen/argon mixtures. Symbols are experimental data [41] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ – Ranzi, $-\cdot$ San Diego Mech, — USC II.

2.4.2. Flow Reactor

159

S49 Flow reactor species profiles of acetylene/oxygen/water/nitrogen mixtures.
Symbols are experimental data [36] lines are model predictions. — AramcoMech
1.3, — GRI-Mech 3.0, --- Leeds Mech, ··· MFC, -·- Ranzi, -·· San Diego
Mech, — USC II.

500 ppm C₂H₂, 0.7% H₂O, in N₂, $\Phi = 1.0$, p = 1.0 atm, $\tau = 195/T$ s

S50 Flow reactor species profiles of acetylene/oxygen/water/nitrogen mixtures. Symbols are experimental data [36] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, ··· MFC, -·- Ranzi, -·· San Diego Mech, — USC II.

S51 Flow reactor species profiles of acetylene/oxygen/water/nitrogen mixtures. Symbols are experimental data [36] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, ··· MFC, -·- Ranzi, -·· San Diego Mech, — USC II.

500 ppm C₂H₂, 0.7% H₂O, in N₂, Φ = 0.05, p = 1.0 atm, τ = 195/T s 8.0E-004 СО 7.0E-004 6.0E-004 5.0E-004 Mole Fraction 4.0E-004 3.0E-004 2.0E-004 1.0E-004 0.0E+000 -1.0E-004 L 1000 1100 800 900 1200 1300 1400 T / K (b)

S52 Flow reactor species profiles of acetylene/oxygen/water/nitrogen mixtures. Symbols are experimental data [36] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S53 Laminar flame speed measurements acetylene/air mixtures. Symbols are experimental data [24, 37] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S54 Flame species profiles of acetylene/oxygen/argon mixtures. Symbols are experimental data [43] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

2.5. Formaldehyde

2.5.1. Flow Reactor

3560 ppm CH₂O in N₂, Φ = 0.51, p = 1.0 atm, T = 944 K

S55 Flow reactor species profiles of formaldehyde/oxygen/nitrogen mixtures.
Symbols are experimental data [44] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, · · · MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S56 Flow reactor species profiles of formaldehyde/oxygen/nitrogen mixtures.
Symbols are experimental data [44] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, 175
— GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S57 Flow reactor species profiles of formaldehyde/oxygen/nitrogen mixtures.
Symbols are experimental data [44] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S58 Flow reactor species profiles of formaldehyde/oxygen/nitrogen mixtures.
Symbols are experimental data [44] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S59 Flame species profiles of formaldehyde/oxygen/argon mixtures. Symbols are experimental data [45] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

2.6. Acetaldehyde

2.6.1. Shock Tube

2.00% CH₃CHO, 2.00% O₂, 96.00% Ar, Φ = 2.50, p_{av} = 2.32 atm

1.00% CH₃CHO, 5.00% O₂, 94.00% Ar, $\Phi = 0.50$, $p_{av} = 2.03$ atm

S60 Shock tube ignition delay times of acetaldehyde/oxygen/argon mixtures.
Symbols are experimental data [46] lines are model predictions. — AramcoMech
1.3, — GRI-Mech 3.0, --- Leeds Mech, … MFC, - · - Ranzi, - · · San Diego
Mech, — USC II.

Time / s (b)

S61 Flow reactor species profiles of acetaldehyde/oxygen/nitrogen mixtures.
Symbols are experimental data [47] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, … MFC, - . - Ranzi, - . . San Diego Mech, — USC II.

2.7. Methanol

2.7.1. Shock Tube

2.00% CH₃OH, 4.00% O₂, 94.00% Ar, $\Phi = 0.75$, $p_{av} = 1.50$ atm

1.00% CH₃OH, 4.00% O₂, 95.00% Ar, Φ = 0.38, $p_{\rm av}$ = 3.24 atm

(b)

0.75% CH₃OH, 1.25% O₂, 98.00% Ar, $\Phi = 0.90$, $p_{av} = 4.21$ atm

(d)

2.00% CH₃OH, 1.00% O₂, 97.00% Ar, Φ = 3.00, $p_{\rm av}$ = 2.94 atm

4.00% CH₃OH, 1.00% O₂, 95.00% Ar, Φ = 6.00, p_{av} = 2.99 atm

0.75% CH₃OH, 1.50% O₂, 97.75% Ar, Φ = 0.75, p_{av} = 4.24 atm

S62 Shock tube ignition delay times of methanol/oxygen/argon mixtures. Symbols are experimental data [48] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ – Ranzi, $-\cdot$ San Diego Mech, — USC II.

2.00% CH₃OH, 6.10% O₂, 91.90% Ar, Φ = 0.50, $p_{\rm av}$ = 11.63 atm

192

5.70% CH₃OH, 8.60% O₂, 85.70% Ar, $\Phi = 1.00$, $p_{av} = 10.12$ atm

(d)

7.70% CH₃OH, 5.80% O₂, 86.50% Ar, Φ = 2.00, p_{av} = 2.18 atm

S63 Shock tube ignition delay times of methanol/oxygen/argon mixtures. Symbols are experimental data [49] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, – – Leeds Mech, · · · MFC, – · – Ranzi, – · · San Diego Mech, — USC II.

12.39% CH₃OH, 18.58% O₂, 69.03% N₂, Φ = 1.00, p_{av} = 13.00 atm

12.39% CH₃OH, 18.58% O₂, 69.03% N₂, $\Phi = 1.00$, $p_{av} = 40.00$ atm

S64 Shock tube ignition delay times of methanol/air mixtures. Symbols are experimental data [50] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, … MFC, - . - Ranzi, - . . San Diego Mech, — USC II.

S65 Flow reactor species profiles of methanol/oxygen/nitrogen mixtures. Symbols are experimental data [51] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S66 Flow reactor species profiles of methanol/oxygen/nitrogen mixtures. Symbols are experimental data [51] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, – – – Leeds Mech, … MFC, – . – Ranzi, – . . San Diego Mech, — USC II.

S67 Flow reactor species profiles of methanol/oxygen/nitrogen mixtures. Symbols are experimental data [51] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-203 Mech 3.0, – – – Leeds Mech, … MFC, – . – Ranzi, – . . San Diego Mech, — USC II.

S68 Flow reactor species profiles of methanol/oxygen/nitrogen mixtures. Symbols are experimental data [51] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, – – – Leeds Mech, … MFC, – . – Ranzi, – . . San Diego Mech, — USC II.

S69 Flow reactor species profiles of methanol/oxygen/nitrogen mixtures. Symbols are experimental data [51] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-211
Mech 3.0, - - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

0.344% CH₃OH in N₂, Φ = 0.86, p = 1.0 atm, T = 1043 K

S70 Flow reactor species profiles of methanol/oxygen/nitrogen mixtures. Symbols are experimental data [51] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-215 Mech 3.0, – – – Leeds Mech, … MFC, – . – Ranzi, – . . San Diego Mech, — USC II.

S71 Flow reactor species profiles of methanol/oxygen/nitrogen mixtures. Symbols are experimental data [51] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S72 Flow reactor species profiles of methanol/oxygen/nitrogen mixtures. Symbols are experimental data [51] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, -- Leeds Mech, \cdots MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II.

S73 Flow reactor species profiles of methanol/oxygen/nitrogen mixtures. Symbols are experimental data [51] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, -- Leeds Mech, \cdots MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II.

0.415% CH₃OH in N₂, Φ = 2.59, p = 15.0 atm, T = 781 K

234

S74 Flow reactor species profiles of methanol/oxygen/nitrogen mixtures. Symbols are experimental data [51] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

 $CH_{3}OH$ Flame Speeds in Air. $T_{initial} = 298 / 243 / 358$ K, p = 1 atm.

S75 Laminar flame speed measurements methanol/air mixtures. Symbols are experimental data [52, 53] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

2.8. Ethanol

2.8.1. Shock Tube

1.00% C₂H₅OH, 6.20% O₂, 92.80% Ar, $\Phi = 0.50$, $p_{av} = 11.63$ atm

2.90% C₂H₅OH, 8.50% O₂, 88.30% Ar, $\Phi = 1.00$, $p_{av} = 2.32$ atm

1.50% C₂H₅OH, 4.70% O₂, 93.80% Ar, $\Phi = 1.00$, $p_{av} = 9.83$ atm

4.00% C₂H₅OH, 6.00% O₂, 90.00% Ar, Φ = 2.00, p_{av} = 2.31 atm

S76 Shock tube ignition delay times of ethanol/oxygen/argon mixtures. Symbols are experimental data [49] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S77 Shock tube ignition delay times of ethanol/air. Symbols are experimental data [54] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0,
--- Leeds Mech, … MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S78 Jet-stirred reactor species profiles of ethanol/oxygen/argon mixtures. Symbols are experimental data [62] lines are model predictions. — AramcoMech 1.3, - GRI-Mech 3.0, - – Leeds Mech, \cdots MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II.

900 950 1000 1050 1100 1150 1200 1250 1300 T / K (d)

(h)

S79 Jet-stirred reactor species profiles of ethanol/oxygen/argon mixtures. Symbols are experimental data [62] lines are model predictions. — AramcoMech 1.3, - GRI-Mech 3.0, - – Leeds Mech, \cdots MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II.

T / K (f)

0.0E+000 L

T / K (h) 5.0E-005

0.0E+000 L

(l)

S80 Jet-stirred reactor species profiles of ethanol/oxygen/argon mixtures. Symbols are experimental data [62] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, … MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

T / K (h)

0.0E+000 L

(l)

S81 Jet-stirred reactor species profiles of ethanol/oxygen/argon mixtures. Symbols are experimental data [62] lines are model predictions. — AramcoMech 1.3, - GRI-Mech 3.0, - – Leeds Mech, \cdots MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II.

1000

0.0E+000 ∟ 750

800

850

900

T / K (f)

S82 Jet-stirred reactor species profiles of ethanol/oxygen/argon mixtures. Symbols are experimental data [62] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ - Ranzi, $-\cdot$ San Diego Mech, — USC II.

0.0E+000 **□** 750

T / K (j)

1050 1100

S83 Jet-stirred reactor species profiles of ethanol/oxygen/argon mixtures. Symbols are experimental data [62] lines are model predictions. — AramcoMech 1.3, - GRI-Mech 3.0, - – Leeds Mech, \cdots MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II.

(j)

S84 Jet-stirred reactor species profiles of ethanol/oxygen/argon mixtures. Symbols are experimental data [62] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, -- Leeds Mech, \cdots MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II.

S85 Jet-stirred reactor species profiles of ethanol/oxygen/argon mixtures. Symbols are experimental data [62] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, -- Leeds Mech, \cdots MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II.

S86 Flow reactor species profiles of ethanol/oxygen/nitrogen mixtures. Symbols are experimental data [56] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, -- Leeds Mech, \cdots MFC, $-\cdot$ – Ranzi, $-\cdot$ · San Diego Mech, — USC II.

S87 Flow reactor species profiles of ethanol/oxygen/nitrogen mixtures. Symbols are experimental data [56] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S88 Flow reactor species profiles of ethanol/oxygen/nitrogen mixtures. Symbols are experimental data [56] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, · · · MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S89 Flow reactor species profiles of ethanol/oxygen/nitrogen mixtures. Symbols are experimental data [57] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, – – – Leeds Mech, … MFC, – . – Ranzi, – . . San Diego Mech, — USC II.

S90 Flow reactor species profiles of ethanol/oxygen/nitrogen mixtures. Symbols are experimental data [57] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

(j)

S91 Flow reactor species profiles of ethanol/oxygen/nitrogen mixtures. Symbols are experimental data [57] lines are model predictions. Model predictions are shifted in order to match 50% fuel consumed. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S92 Laminar flame speed measurements ethanol/air mixtures. Symbols are experimental data [59–61] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - - Leeds Mech, ··· MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(j)

(k)

(l)

(n)

(p)

S93 Flame species profiles of ethanol/oxygen/argon mixtures. Experimental data has been shifted by 0.05 cm which is within experimental uncertainty. Symbols are experimental data [62] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, … MFC, $- \cdot -$ Ranzi, $- \cdot \cdot$ San Diego Mech, — USC II.

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(n)

(p)

S94 Flame species profiles of ethanol/oxygen/argon mixtures. Experimental data has been shifted by 0.015 cm which is within experimental uncertainty. Symbols are experimental data [62] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, … MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

(c)

(d)

(e)

(f)

(g)

(h)

(j)

(l)

(n)

(p)

S95 Flame species profiles of ethanol/oxygen/argon mixtures. Experimental data has been shifted by 0.08 cm which is within experimental uncertainty. Symbols are experimental data [62] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, … MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

2.9. Methane/Ethane

2.9.1. Shock Tube

0.42% CH₄, 0.04% C₂H₆, 1.82% H₂ 3.74% O₂, 93.99% Ar, $\Phi = 0.5$, $p_{av} = 4.07$ atm

. ,

(h)

1.35% CH₄, 0.12% C₂H₆, 0.96% H₂ 3.61% O₂, 93.96% Ar, $\Phi = 0.5, p_{av} = 15.35$ atm

1.35% CH₄, 0.12% C₂H₆, 0.96% H₂ 3.61% O₂, 93.96% Ar, $\Phi = 1.0, p_{av} = 1.01$ atm

Symbols are experimental data [64] lines are model predictions.
AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, ··· MFC, -·- Ranzi, -·· San Diego Mech, — USC II.

1.66% CH₄, 0.14% C₂H₆, 3.92% O₂, 92.27% Ar, $\Phi = 1.0, p_{av} = 0.96$ atm

S97 Shock tube ignition delay times of methane/ethane/oxygen/argon mixtures. Symbols are experimental data [63] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, – – Leeds Mech. · · · MFC, – · – Ranzi, – · · San Diego Mech, — USC II.

0.26% CH₄, 0.09% C₂H₆, 1.65% O₂, 98.0% Ar, $\Phi = 0.5$, p = 1.0 atm

0.12% CH₄, 0.36% C₂H₆, 1.52% O₂, 98.0% Ar, $\Phi = 1.0, p = 1.0$ atm

0.67% CH₄, 1.33% O₂, 98.0% Ar, $\Phi = 1.0, p = 1.0$ atm

5.56% CH₄, 1.85% C₂H₆, 17.59% O₂, 75.0% Ar, $\Phi = 1.0$, p = 1.0 atm

3.33% CH₄, 3.33% C₂H₆, 18.33% O₂, 75.0% Ar, $\Phi = 1.0, p = 1.0$ atm

0.86% CH₄, 2.59% C₂H₆, 21.55% O₂, 75.0% Ar, $\Phi = 0.5$, p = 1.0 atm

5.0% CH₄, 20.0% O₂, 75.0% Ar, $\Phi = 0.5$, p = 1.0 atm

(h)

5.56% C₂H₆, 19.44% O₂, 75.0% Ar, $\Phi = 1.0$, p = 1.0 atm

3.13% C₂H₆, 21.88% O₂, 75.0% Ar, $\Phi = 0.5$, p = 1.0 atm

1.11% CH₄, 0.37% C₂H₆, 3.52% O₂, 95.0% Ar, $\Phi = 1.0, p = 10.0$ atm

0.67% CH₄, 0.67% C₂H₆, 3.67% O₂, 95.0% Ar, $\Phi = 1.0, p = 10.0$ atm

0.17% CH₄, 0.52% C₂H₆, 4.31% O₂, 95.0% Ar, $\Phi = 0.5$, p = 10.0 atm

0.49% CH₄, 1.46% C₂H₆, 3.05% O₂, 95.0% Ar, Φ = 2.0, p = 10.0 atm

2.5% CH₄, 2.5% O₂, 95.0% Ar, Φ = 2.0, p = 30.0 atm

(p)

5.14% CH₄, 1.71% C₂H₆, 8.14% O₂, 85.0% Ar, $\Phi = 2.0$, p = 30.0 atm

3.16% CH₄, 3.16% C₂H₆, 8.68% O₂, 85.0% Ar, $\Phi = 2.0, p = 10.0$ atm

0.91% CH₄, 2.73% C₂H₆, 11.36% O₂, 85.0% Ar, $\Phi = 1.0$, p = 30.0 atm

5.0% CH₄, 10.0% O₂, 85.0% Ar, $\Phi = 1.0, p = 10.0$ atm

3.33% C₂H₆, 11.67% O₂, 85.0% Ar, $\Phi = 1.0$, p = 10.0 atm

1.88% C₂H₆, 13.13% O₂, 85.0% Ar, $\Phi = 0.5, p = 10.0$ atm

S98 Shock tube ignition delay times of methane/ethane/oxygen/argon mixtures. Symbols are experimental data [64] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech. \cdots MFC, $-\cdot$ - Ranzi, $-\cdot$ San Diego Mech, — USC II.

0.913% CH₄, 0.087% C₂H₆ in N₂, Φ = 0.3, p = 10.0 atm, τ = 0.25 s

0.913% CH₄, 0.087% C₂H₆ in N₂, $\Phi = 0.3$, p = 10.0 atm, $\tau = 0.25$ s

0.913% CH₄, 0.087% C₂H₆ in N₂, $\Phi = 0.3$, p = 10.0 atm, $\tau = 0.25$ s

0.913% CH₄, 0.087% C₂H₆ in N₂, $\Phi = 0.3$, p = 10.0 atm, $\tau = 0.25$ s

S99 Jet-stirred reactor species profiles of methane/ethane/oxygen/nitrogen mixtures. Symbols are experimental data [65] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ - Ranzi, $-\cdot$ San Diego Mech, — USC II.

0.913% CH₄, 0.087% C₂H₆ in N₂, $\Phi = 0.6$, p = 10.0 atm, $\tau = 0.25$ s

0.913% CH₄, 0.087% C₂H₆ in N₂, Φ = 0.6, p = 10.0 atm, τ = 0.25 s

0.913% CH₄, 0.087% C₂H₆ in N₂, $\Phi = 0.6$, p = 10.0 atm, $\tau = 0.25$ s

S100 Jet-stirred reactor species profiles of methane/ethane/oxygen/nitrogen mixtures. Symbols are experimental data [65] lines are model predictions. - AramcoMech 1.3, - GRI-Mech 3.0, --- Leeds Mech, \cdots MFC, $-\cdot$ - Ranzi, $\frac{384}{384}$ $-\cdot\cdot$ San Diego Mech, — USC II.

0.913% CH₄, 0.087% C₂H₆ in N₂, $\Phi = 1.0$, p = 10.0 atm, $\tau = 0.25$ s

0.913% CH₄, 0.087% C₂H₆ in N₂, Φ = 1.0, p = 10.0 atm, τ = 0.25 s

0.913% CH₄, 0.087% C₂H₆ in N₂, Φ = 1.0, p = 10.0 atm, τ = 0.25 s

0.913% CH₄, 0.087% C₂H₆ in N₂, $\Phi = 1.0$, p = 10.0 atm, $\tau = 0.25$ s

S101 Jet-stirred reactor species profiles of methane/ethane/oxygen/nitrogen mixtures. Symbols are experimental data [65] lines are model predictions.
AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, ··· MFC, -·- Ranzi, -·· San Diego Mech, — USC II.

S102Jet-stirredreactorspeciesprofilesofmethane/ethane/hydrogen/oxygen/nitrogenmixtures.Symbols areex-perimentaldata[65]linesaremodel392predictions.—AramcoMech1.3,—GRI-Mech3.0, --- LeedsMech, \cdots MFC, $-\cdot -$ Ranzi, $-\cdot \cdot$ SanDiegoMech, —USC II.

S103 Jet-stirred reactor species profiles of methane/ethane/hydrogen/oxygen/nitrogen mixtures. Symbols are experimental data [65] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, - - Leeds Mech, … MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S104 Jet-stirred reactor species profiles of methane/ethane/hydrogen/oxygen/nitrogen mixtures. Symbols are experimental data [65] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, – – Leeds Mech, … MFC, – · – Ranzi, – · · San Diego Mech, — USC II.

S105Jet-stirredreactorspeciesprofilesofmethane/ethane/hydrogen/oxygen/nitrogenmixtures.Symbols areex-perimentaldata[65]linesaremodel404modelpredictions.—AramcoMech1.3,—GRI-Mech3.0, --- LeedsMech, \cdots MFC, $-\cdot$ – Ranzi, $-\cdot\cdot$ SanDiegoMech, —USC II.

S106Jet-stirredreactorspeciesprofilesofmethane/ethane/hydrogen/oxygen/nitrogenmixtures.Symbols areex-perimentaldata[65]linesaremodel408methane.—AramcoMech1.3,—GRI-Mech3.0, --- LeedsMech, \cdots MFC, $-\cdot$ – Ranzi, $-\cdot$ · San DiegoMech, —USC II.

S107 Jet-stirred reactor species profiles of methane/ethane/hydrogen/oxygen/nitrogen mixtures. Symbols are experimental data [65] lines are model predictions. — AramcoMech 1.3,
— GRI-Mech 3.0, - - Leeds Mech, … MFC, - · - Ranzi, - · · San Diego Mech, — USC II.

S108 Laminar flame speed measurements 80/20 methane/ethane/helium mixtures. Symbols are experimental data [16] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, – – Leeds Mech, \cdots MFC, – \cdot – Ranzi, – $\cdot\cdot$ San Diego Mech, — USC II.

S109 Laminar flame speed measurements 60/40 methane/ethane/air mixtures. Symbols are experimental data [16] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, ··· MFC, -·- Ranzi, -·· San Diego Mech, — USC II.

S110 Laminar flame speed measurements 60/40 methane/ethane/helium mixtures. Symbols are experimental data [16] lines are model predictions. — AramcoMech 1.3, — GRI-Mech 3.0, --- Leeds Mech, ··· MFC, -·- Ranzi, -·· San Diego Mech, — USC II.

References

- G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, Jr., V.V. Lissianski, Z. Qin, http://www.me.berkeley.edu/gri_mech/
- [2] K.J. Hughes, Т. Turányi, M.J. Pilling The Leeds methane oxidation mechanism Version 1.5.2001: Available from: http://garfield.chem.elte.hu/Combustion/mechanisms/metan15.dat
- [3] CHEMKIN-MFC, MFC 5.0, 2010, Reaction Design: San Diego.
- [4] C1-C3 mechanism version 1201. 2012, Available from: http://creckmodeling.chem.polimi.it/kinetic.html.
- [5] http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
- [6] H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F.N. Egolfopoulos, C.K. Law, USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm, May 2007
- [7] L.J. Spadaccini, M.B. Colket III, Prog. Energy Comb. Sci. 20 (1994) 431-460.
- [8] E.L. Petersen, D.F. Davidson, R.K. Hanson, J. Prop. Power 15 (1999) 82-91.
- [9] D.J. Seery, C.T. Bowman, Combustion and Flame 14 (1970) 37-47.
- [10] C.S. Eubank, M.J. Rabinowitz, J.W.C. Gardiner, R.E. Zellner, Symposium (International) on Combustion 18 (1) (1981) 1767-1774.
- [11] C.J. Jachimowski, Combust. Flame 23 (1974) 233-248. 1
- [12] A. Lifshitz, K. Scheller, A. Burcat, G. B. Skinner, Combust. Flame 16 (1971) 311-321.
- [13] P. Dagaut, J.C. Boettner, M. Cathonnet, Comb. Sci. Tech. 77 (1-3) (1991) 127-148.

- [14] T. Le Cong, P. Dagaut, G. Dayma, J. Eng. Gas Turb. Power 130 (2008)
- [15] W. Lowry, J. de Vries, M. Krejci, E.L. Petersen, Z. Serinyel, W.K. Metcalfe,
 H.J. Curran, G. Bourque, J. Eng. Gas Turbines Power 133 (2011) 091501.
- [16] Y. Kochar, J. Seitzman, T. Lieuwen, W.K. Metcalfe, S.M. Burke, H.J. Curran, M. Krejci, W. Lowry, E.L Petersen, G. Bourque, ASME Paper GT2011-45122, 56th ASME Turbo Expo (2011).
- [17] G. Rozenchan, D.L. Zhu, C.K. Law, S.D. Tse, Proc. Combust. Inst. 29 (2002) 1461-1470.
- [18] X.J. Gu, M.Z. Haq, M. Lawes, R. Woolley, Combust. Flame 121 (2000) 41-58.
- [19] M.I. Hassan, K.T. Aung, G.M. Faeth, Combust. Flame 115 (1998) 539-550.
- [20] C.M. Vagelopoulos, F.N. Egolfopoulos, Symposium (International) on Combustion 27 (1998) 513-519.
- [21] A. Vanmaaren, D.S. Thung, L.P.H. Degoey, Comb. Sci. Tech. 96 (1994) 327-344.
- [22] C.M. Vagelopoulos, F.N. Egolfopoulos, C.K. Law, Symposium (International) on Combustion 25 (1994) 1341-1347.
- [23] S.C. Taylor PhD. Thesis, Vol. University of Leeds, 1991.
- [24] F.N. Egolfopoulos, D.L. Zhu, C.K. Law, Symposium (International) on Combustion 23 (1991) 471-478.
- [25] J.Y. Hidaka, K. Sato, Y. Henmi, H. Tanaka and K. Inami, Combust. Flame 118 (1999) 340-358.
- [26] A. Burcat, K. Scheller, A. Lifshitz, Combust. Flame 16 (1971) 29-33.
- [27] J. de Vries, J.M. Hall, S.L. Simmons, M.J.A. Rickard, D.M. Kalitan, E.L. Petersen, Combust. Flame 150 (2007) 137-150.

- [28] P. Dagaut, M. Cathonnet, J. C. Boettner, Int. J. Chem. Kinet. 23 (5) (1991) 437-455.
- [29] W.K. Metcalfe, S.M. Burke, H.J. Curran, M.M. Kopp, N.S. Donato, E.L. Petersen, manuscript submitted
- [30] O.G. Penyazkov, K.L. Sevrouk, V. Tangirala, N. Joshi, Proc. Combust. Inst. 32 2009) 2421-2428.
- [31] S. Saxena, M.S.P. Kahandawala, S.S. Sidhu, Combust. Flame 158 (6) (2011) 1019-1031.
- [32] P. Dagaut, J.C. Boettner and M. Cathonnet, Int. J. Chem. Kinet. 22 (6) (1990) 641-664.
- [33] S. Jallais, L. Bonneau, M. Auzanneau, V. Naudet, S. Bockel-Macal, Ind. Eng. Chem. Res. 41 (2002) 5659-5667.
- [34] T. Le Cong, E. Bedjanian, P. Dagaut, Comb. Sci. Tech. 182 (2010) 333-349.
- [35] T. Carriere, P. R. Westmoreland, A. Kazakov, Y. S. Stein, F. L. Dryer, Proc. Combust. Inst. 29 (2002) 1257-1266.
- [36] J.G. Lopez, C.L. Rasmussen, M.U. Alzueta, Y. Gao, P. Marshall, P. Glarborg, Proc. Combust. Inst. 32 (2009) 367-375.
- [37] G. Jomaas, X.L. Zheng, D.L. Zhu, C.K. Law, Proc. Combust. Inst. 30 (2005) 193-200.
- [38] K. Kumar, G. Mittal, C.-J. Sung, C.K. Law, Combust. Flame 153 (2008) 343-354.
- [39] A. Bhargava, P.R. Westmoreland, Combust. Flame 113 (1998) 333-347.
- [40] Y. Hidaka, K. Hattori, T. Okuno, K. Inami, T. Abe, T. Koike, Combust. Flame 107 (1996) 401-417.
- [41] B. Eiteneer, M. Frenklach, Int. J. Chem. Kinet. 35 (2003) 391-414.

- [42] M. U. Alzueta, M. Borruey, A. Callejas, A. Millera, R. Bilbao Combust. Flame 152 (2008) 377-386.
- [43] P.R. Westmoreland, J.B. Howard, J.P. Longwell, Symposium (International) on Combustion 21 (1988) 773-782.
- [44] S. Hochgreb, R.A. Yetter, F.L. Dryer, Symposium (International) on Combustion 23 (1991) 171-177.
- J. Η. [45] V. Dias. Vandooren, Proceed-Jeanmart of the European Combustion 2011 ings Meeting http://data.cas.manchester.ac.uk/database3/SAMPLE %20III/Dropbox%20stuff/ECM/ECM%202011%20Papers/196.pdf
- [46] K. Yasunaga, S. Kubo, H. Hoshikawa, T. Kamesawa, Y. Hidaka, Int. J. Chem. Kinet. 40 (2008) 73-102.
- [47] D.C.Z. Zarubiak M.S.E Thesis Princeton University, Princeton, 1997.
- [48] C. T. Bowman, Combust. Flame 25 (1975) 343-354.
- [49] K.E. Noorani, B. Akih-Kumgeh, J M. Bergthorson, Energy and Fuels 24 (2010) 5834-5843.
- [50] K. Fieweger, R. Blumenthal, G. Adomeit, Combust. Flame 109 (1997) 599-619.
- [51] T. J. Held, F. L. Dryer, Int. J. Chem. Kinet. 30 (1998) 805-830.
- [52] J. Vancoillie, M. Christensen, E.J.K. Nilsson, S. Verhelst, A.A. Konnov, Energy and Fuels 26 (2012) 1557-1564.
- [53] P.S. Veloo, Y.L. Wang, F.N. Egolfopoulos, C.K. Westbrook, Combust. Flame 157 (2010) 1989-2004.
- [54] K.A. Heufer, H. Olivier, Shock Waves 20 (2010) 307-316.
- [62] N. Leplat, P. Dagaut, C. Togbé, J. Vandooren, Combust. Flame 158 (2011) 705-725.

- [56] J. Li, A. Kazakov, F.L. Dryer, Int. J. Chem. Kinet. 33 (2001) 859-867.
- [57] T.S. Norton, F.L. Dryer, Int. J. Chem. Kinet. 24 (1992) 319-344.
- [58] M.U. Alzueta, J.M. Hernandez, Energy and Fuels 16 (2001) 166-171.
- [59] F.N. Egolfopoulos, D.X. Du, C.K. Law, Symposium (International) on Combustion 24 (1992) 833-841.
- [60] J.P.J. van Lipzig, E.J.K. Nilsson, L.P.H. de Goey, A.A. Konnov, Fuel 90 (2011) 2773-2781.
- [61] Ö.L. Gülder, Symposium (International) on Combustion 19 (1982) 275-281.
- [62] N. Leplat, P. Dagaut, C. Togb, J. Vandooren, Combus. Flame 158 (2011) 705–725
- [63] J. Herzler, C. Naumann, Proc. Combust. Inst. 32 (2009) 213-220.
- [64] C.J. Aul, W.K. Metcalfe, S.M. Burke, H.J. Curran, E.L. Petersen, paper submitted (2012)
- [65] P. Dagaut, G. Dayma, Int. J. Hydrogen Energy 31 (2006) 505-515.