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Abstract 

Climate change is expected to lead to increases in the prevalence of extreme temperatures with 

potentially significant consequences for human health. This paper investigates the relationship 

between temperature and morbidity in a high-income country with a relatively mild climate 

and considers the role of behavioural responses to extreme temperatures. Using weekly data on 

accident and emergency (A&E) attendances for 429 hospitals across England over the period 

2010-2015, we find that while higher temperatures are in general associated with significant 

increases in hospital attendances, there are distinct effects evident across the temperature 

distribution. In particular, while cold weather is associated with lower contemporaneous A&E 

attendances, this effect appears to be entirely attributable to displacement of A&E visits to 

subsequent weeks. In contrast, for hotter temperatures, we find evidence of substantial 

contemporaneous increases in weekly A&E attendances that are not offset by subsequent 

reductions. In a setup that includes hospital, week, year, region-by-week, and region-by-year 

fixed effects, we estimate that for weeks with maximum temperatures exceeding 28oC, A&E 

attendances increase by 7.8% relative to weeks with maximum temperatures of 10-13oC. Over 

the subsequent four-week period, the estimated net increase in A&E attendances remains large 

at 7.5%. Overall our results are consistent with differences in individual-level behavioural 

responses to extreme cold and hot temperatures in England, which have important 

consequences for health outcomes and health system capacity, particularly in the context of 

increasingly frequent and intense extreme heat days as a result of climate change. 

 

Keywords: Extreme Temperature; Climate Change; Morbidity; Behaviour.  
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1. INTRODUCTION 

Climate change is expected to lead to increases in the prevalence of extreme temperatures and 

destructive weather events, with potentially significant effects on human health (Costello et al., 

2009). To date, while numerous studies have shown a link between extreme hot and cold 

temperatures and excess mortality (Deschenes, 2014; Campbell et al., 2018; Basu, 2009), the 

impact on morbidity has received much less attention and significant gaps remain in our 

understanding (White, 2017). For example, while studies such as White (2017), Karlsson and 

Ziebarth (2018), Agarwal et al. (2021), and Mullins and White (2019) have presented estimates 

of the effects of extreme temperatures on health outcomes, these effects have yet to be 

demonstrated in a country with a temperate climate and relatively mild extreme temperatures. 

This is important, as the greatest overall temperature increases from climate change are 

expected to occur in northern latitudes as a result of ‘Arctic amplification’ (Beusch et al., 2022).  

As well as providing a more complete picture of the overall effects of climate on human health, 

analysing morbidity also presents an opportunity to develop a deeper understanding of the 

channels or mechanisms through which health is impacted by extreme temperatures. For 

example, adaptation behaviours are an important mechanism in mediating the biological 

relationship and, as a result, a critical challenge in assessing the human health threats posed by 

climate change is the degree to which “adaptation is possible” (Deschenes, 2014). However, it 

is not generally well understood why some populations adapt so effectively in some dimensions 

of climate, while entirely failing to adapt in other contexts, and this remains a critical research 

challenge (Carleton and Hsiang, 2016). In this context, this paper investigates the relationship 

between temperature and morbidity in a high-income country with a relatively mild climate 

and considers the likely role of behavioural responses to extreme temperatures. In particular, it 

focuses on potential short-term defensive/avoidance adaptive behaviours that may help 

mitigate the health impacts of extreme temperature events.  
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As noted, the relationship between temperature and human health has been considered 

extensively, including in the public health, epidemiology, and economics literatures. For the 

most part, the focus of the latter has been on the effects of exposure to extreme temperatures 

on mortality. For example, Deschenes and Greenstone (2011) found that days with mean 

temperatures above 90°F (32.2°C) and below 40°F (4.4°C) were associated with increases in 

mortality in the US. Barreca (2012) found comparable results, also in the US, after controlling 

for humidity, while Karlsson and Ziebarth (2018) found a similar relationship between 

temperature and mortality in Germany. 

In contrast, the relationship between temperature and morbidity has received less attention, 

with some notable exceptions. For example, White (2017) examined the dynamic relationship 

between temperature and morbidity using emergency department (ED) visits in California, 

finding both extreme cold and hot days to be associated with net total increases in visits over a 

31-day cumulative window. Similar ‘U-shaped’ relationships were found for hospital 

admissions in Germany by Karlsson and Ziebarth (2018) and in China by Agarwal et al. (2021), 

though the latter found extremely cold temperatures (less than -6oC) had no effect on 

admissions. Finally, Mullins and White (2019) considered the relationship between 

temperature and mental health, finding higher temperatures increase ED visits for mental 

illness, suicides, and self-reported days of poor mental health. 

In terms of behavioural responses, the temperature-mortality literature has generally 

considered longer-term adaptations, with several studies focussing on the role of air 

conditioning. For example, Deschenes and Greenstone (2011) and Barreca (2012) showed 

increases in residential energy use linked to air conditioning as temperatures increase, while 

Barreca et al. (2016) found that much of the improvement in the temperature-mortality 

relationship in the US over the last century was attributable to the adoption of air conditioning. 

Other studies have highlighted the role of migration. For example, Deschenes and Moretti 
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(2009) argued that migration from cooler to warmer regions is responsible for some of the 

increases in life expectancy since the 1970s in the US, while Heutel et al. (2021) demonstrated 

variation in the ability of different regions to adapt to climate change, with the mortality effects 

of extreme heat being significantly higher in cold regions relative to warm regions. The factors 

driving this heterogeneity across climate regions is not clear. 

In contrast to these longer-term adaptation responses, relatively few studies have considered 

short-term behavioural responses to extreme temperature. While such responses can influence 

the relationship between temperature and morbidity, they are not necessarily self-protecting in 

nature. Focusing on general behaviours, Graff-Zivin and Neidell (2014) investigated the 

relationship between temperature and time-use in the US, finding an increase in time devoted 

to indoor leisure at the expense of outdoor leisure in response to both extreme hot and cold 

weather. They also found decreased time devoted to labour among weather-exposed workers. 

White (2017) highlighted the potential role of behaviour in mediating the dynamic relationship 

between temperature and morbidity, noting behavioural responses are unlikely to be influenced 

only by individuals’ expected health and that it is possible that behavioural responses may be 

utility enhancing yet damaging to health. 

Within this context, this paper combines data on accident and emergency (A&E) attendances 

for 429 hospitals in England over the period 2010-2015 with weather data based on hospital 

locations to analyse the temperature-morbidity relationship. With daily maximum temperatures 

ranging from -3.5oC to 32.8oC, England represents an ideal context for studying the health 

effects of extreme temperatures in relatively cooler climates. To do so, we employ a distributed 

lag regression model that includes hospital, week, year, region-by-week, and region-by-year 

fixed effects and find that while higher temperatures are associated with significant increases 

in hospital attendances, there are distinct and noteworthy effects evident across the temperature 

distribution. In particular, while cold weather is associated with lower contemporaneous A&E 
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attendances, this effect appears to be entirely attributable to displacement of A&E visits to 

subsequent weeks. In contrast, for hotter temperatures, we find evidence of substantial 

contemporaneous increases in weekly A&E attendances that are not offset by subsequent 

reductions. Overall, our results are consistent with differences in behavioural responses of 

individuals to extreme cold and hot temperatures in England. 

Our paper makes a number of specific contributions to the literature. First, using the near-

universe of A&E attendance records for England over a 5-year time period, we provide new 

insights on the link between temperature, morbidity, and human behaviour in a high-income 

country with a temperate climate and relatively mild extreme temperatures. In particular, our 

analysis shows, for the first time, a significant effect of hot temperatures on human health in 

such a setting. In addition, we find net increases in A&E attendances at lower levels of 

temperature than in previous studies, perhaps reflecting a relative lack of adaptation to heat in 

our context. This finding has major implications for our current understanding of the health 

impact of climate change, illustrating the potentially significant negative health consequences 

of climate change for countries with cooler climates, many of which are located in regions 

currently projected to face significant temperature increases (Beusch et al., 2022). 

Second, our results across the temperature distribution are consistent with differences in 

individual-level behavioural responses to extreme cold and hot temperatures in England. In 

particular, we show that while individuals may be engaging in self-protecting behaviours to 

mitigate the health consequences of cold temperatures, this does not appear to be the case for 

hot temperatures. This finding highlights the importance of local climate in determining 

behavioural responses to weather events. 

Third, our results also highlight important differences in behavioural responses across regions. 

For example, while our results corroborate findings from White (2017) for contemporaneous 

effects of cold temperatures in California, we do not observe cumulative net increases over 
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subsequent weeks in England. This suggests, for example, that England's population is well 

adapted to cold temperatures, in comparative terms, likely in part because of their generally 

cooler climate.  

The rest of this paper is organised as follows: Section 2 describes the data, Section 3 outlines 

the empirical strategy, while Section 4 presents and describes the main results. Section 5 then 

discusses the possible behavioural mechanisms underpinning our findings and Section 6 

concludes.  

 

2. DATA 

To analyse the temperature-morbidity relationship in England, we combine publicly available 

data on A&E attendances from National Health Service (NHS) England with regional 

population data from StatWales and weather data from the Centre for Environmental Data 

Analysis (CEDA). This section describes each of these data sources and the relevant variables 

in more detail. 

 

2.1 A&E Attendances 

We use A&E Attendances and Emergency Admissions data from NHS England that contains 

the near-universe of all A&E attendances for both public and private health providers in 

England, including NHS Trust, NHS Foundation Trust, and independent sector organisations 

(NHS, 2022). In particular, we analyse data on weekly A&E attendances at 429 unique A&E 

treatment facilities across England over the period from November 2010 to July 2015. The 

analysis focuses on A&E attendances, since these are likely to better capture the effects of heat-

related health shocks. Other health outcomes, such as hospital admissions, are likely to also be 

affected by factors such as the number of available beds, which may be lower during periods 
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of extreme temperatures due to excess demand for health services. In addition, A&E 

attendances also account for less severe and more easily treatable heat-related morbidity that 

do not require hospitalisation but are nonetheless important. 

The primary outcome of interest in our analysis is the weekly A&E treatment facility 

attendance rate per 100,000 regional population, with the location of each treatment facility 

matched to one of nine strategic health regions in England. The regional population data is 

taken from StatWales and based on mid-year population estimates of local authorities by year, 

aggregated to the regional level (StatWales, 2022). A&E attendance rates, the primary outcome 

of interest in our analysis, are calculated by dividing the number of weekly A&E attendances 

at a treatment facility by its regional population. Table 1 presents descriptive statistics for A&E 

attendances for our balanced panel of 156 treatment facilities (for more details, see below). 

Overall, the mean weekly A&E treatment facility attendance rate was 34.9 per 100,000 regional 

population from a total of 76.7 million A&E attendances over the period. A breakdown in total 

attendances by region is also presented. 

 [Insert Table 1 about here] 

One important caveat to note here relates to changes in the number of treatment facilities each 

week over the study period in our data (see Figure A1 in the Appendices), which is driven by 

two factors. First, only healthcare facilities with A&E attendances averaging more than 200 

attendances per month are included in the NHS data, leading to variation in the number of 

treatment facilities per period. Second, there is also some attrition caused by organisational 

changes in the public health system in England during the period (including hospital mergers 

and hospital trust reorganisation) that led to the closure of some private healthcare facilities. 

To address and consider the likely impact of these issues for our analysis, we present estimates 

from models using balanced panels (i.e. including only hospitals with observations for all 

periods) as our main results, but also present results using an unbalanced panel as a robustness 



10 
 

check. This implies we use data on 156 A&E treatment facilities in the balanced panel analysis 

and 429 in the unbalanced panel analysis. 

 

2.2 Weather Data 

To assess the impact of temperature on A&E attendances, we match the NHS provider-level 

A&E weekly attendance rates with weather data based on a treatment facility’s location within 

a strategic health region and the end date of weekly A&E records. The weather data is taken 

from CEDA’s HadUK-Grid Climate Observations by Administrative Regions over the UK 

dataset (Met Office et al., 2021). HadUK-Grid is a collection of gridded climate variables 

derived from the network of UK land surface observations and the data have been interpolated 

from meteorological station data onto a uniform grid, providing complete and consistent 

coverage across England at 1km resolution. The gridded data are produced for daily, monthly, 

seasonal, and annual timescales, and the primary purpose of these data are to facilitate 

monitoring of UK climate and research into climate change, impacts, and adaptation. The 

HadUK-Grid includes information on maximum temperature (degrees Celsius) and 

precipitation (millimetres), which are used in this paper, though it does not provide daily 

measures of humidity. A previous study by White (2017) found that the inclusion of humidity 

did not alter the results. 

Table 2 presents definitions and descriptive statistics for the temperature variables used in our 

analysis i.e. ten separate weekly maximum temperature indicator bins. For example, the lowest 

temperature bin [1oC, 4oC) takes a value of 1 if the highest daily maximum temperature in a 

given week is greater than or equal to 1oC but less than 4oC. Subsequent bins increase in 3oC 

intervals to the highest temperature indicator [28oC, ), which takes a value of 1 if the highest 

daily maximum temperature in a given week is greater than or equal to 28oC. In other words, 
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these variables are defined on the basis of the maximum of the seven daily maximum 

temperature observations for a given region-week. Overall Table 2 shows that the two highest 

temperature bins, [25oC, 28oC) and [28oC, ), account for approximately 7.6% of weekly 

maximum temperatures, while the two lowest bins, [1oC, 4oC) and [4oC, 7oC) , account for 

4.1%. The modal bin is [10oC, 13oC), accounting for 20.4% of weekly maximum temperatures. 

[Insert Table 2 about here] 

Furthermore in relation to temperatures, and as a complement to the data in Table 2, Figure 1 

presents the distribution of daily maximum temperatures at regional-level for England over the 

study period. It highlights that extreme temperatures are relatively rare in England at present, 

with a bimodal distribution centred around 10oC and 17oC. 

[Insert Figure 1 about here] 

Finally, in addition to the temperature data, we also include variables relating to weekly 

precipitation to act as controls in our models. In particular, we construct variables for four 

separate 10mm rainfall bins, defined as a count of the number of days in a given week with 

rainfall levels falling into various bins (summary statistics not presented but available from the 

authors on request).  

 

3. EMPIRICAL APPROACH 

Our empirical analysis aims to estimate the effect of temperature in a given week 𝑡 on A&E 

attendance rates in the same week, as well as in subsequent weeks 𝑡 + 1, 𝑡 + 2, and 𝑡 + 3. To 

do so, we follow closely the approach of White (2017) and employ a distributed lag regression 

model whereby the weekly A&E attendance rate is regressed on the contemporaneous weekly 

temperature and three weekly temperature lags. Defining 𝐴&𝐸_𝑅𝑎𝑡𝑒௜,௥,௧ as the A&E attendance 

rate for treatment facility i located in region 𝑟 in week 𝑡, the specification of our main model 
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is given by: 

𝐴&𝐸_𝑅𝑎𝑡𝑒௜,௥,௧ =  𝛼 + ෍ ෍ 𝛽௝,௧ି௛𝑇𝑒𝑚𝑝௝,௥,௧ି௛

ଷ

௛ୀ଴

+ ෍ ෍ 𝛾௝,௧ି௛𝑃𝑟𝑒𝑐𝑖𝑝௝,௥,௧ି௛

ଷ

௛ୀ଴

ଷ

௝ୀଵ

ଽ

௝ୀଵ

+ 𝛿ௐ௘௘

+ 𝛿௒௘௔௥ + 𝛿ோ௘௚௜௢௡ିௐ௘௘ + 𝛿ோ௘௚௜௢௡ି௒௘௔௥ + 𝛿்௥௘௔௧_ி௔௖௜௟௜௧௬ + 𝜖௜,௥,௧ 

[1] 

where the main explanatory variables of interest, 𝑇𝑒𝑚𝑝௝,௥,௧ି௛, are the weekly maximum 

temperature indicator bins defined in Table 2 and their lags. The omitted temperature category 

in our model is the 10-13oC bin1, implying the estimated coefficients 𝛽௝,௧ି௛ represent the 

marginal effect of a week with maximum temperature in bin j relative to a week with maximum 

temperature in the range 10-13oC. Controls for weekly precipitation 𝑃𝑟𝑒𝑐𝑖𝑝௝,௥,௧ି௛, including 

lags, are also included in the form of 10mm rainfall bins, with the 0-10mm bin omitted. Given 

the nature of our weather data, standard errors are clustered at the region level. 

The model in Equation [1] allows us to estimate a range of different effects. First, the 

‘contemporaneous effect’ 𝛽௝,௧ represents the impact of a weekly maximum temperature bin 𝑗 

on A&E attendances in the same week, controlling for weekly maximum temperatures for 

every other week in the 4-week period. Second, the ‘cumulative effect’ measures the total effect 

of a temperature bin i.e. the impact on both current and subsequent A&E weekly attendances. 

It is calculated as the sum of all coefficients (including lags) for each temperature bin, 

∑ 𝛽௝,௧ି௛
ଷ
௛ୀ଴  , and captures the total ‘net effect’ of temperature on A&E attendances over four 

weeks. Third, the pattern of the dynamic relationship between temperature and A&E 

attendances over the 4-week period can also be considered using the separate lagged 

                                                
1 A variety of omitted bins have been used in the literature, depending on the context of each region or country’s 
underlying climate. For example, White (2017) omitted the 60-65oF (15.6-18.3oC) temperature bin for 
California, Karlsson and Ziebarth (2018) omitted the 40-50oF (4.4-10oC) bin for Germany, while Agarwal et al. 
(2021) omitted the 9-12oC bin for China. As noted in Agarwal et al. (2021), the literature generally uses the 
ideal or most comfortable temperature as the reference group and we have chosen the modal 10-13oC bin. Our 
results and findings are robustness to alternative base categories.  
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coefficients and their linear combinations. 

In terms of identification, our strategy relies on the inclusion of a comprehensive set of fixed 

effects in our distributed lag model. First, it is necessary to account for the fact that both A&E 

attendances and weather are likely to vary together seasonally and our model includes both 

week-of-year (𝛿ௐ௘௘௞) and region-by-week (𝛿ோ௘௚௜௢௡ିௐ௘௘ ) fixed effects. This allows 

seasonality to vary at a relatively fine scale (weekly) and for seasonality effects to vary by 

region, which is important if changes in health are driven by behaviour (White, 2017). In 

addition, region-by-week fixed effects control for differences in the climate across England 

and thus capture any potential correlation in the seasonality of both weather and health across 

regions. 

We also include year (𝛿௒௘௔௥) and region-by-year (𝛿ோ௘௚௜௢௡ି௒௘௔ ) fixed effects. This controls 

flexibly both for annual factors across England and annual factors that vary by region including, 

for example, variations in regional health policy or demographic changes. The region-by-year 

fixed effects are particularly important for identification in our model, as health policy varies 

significantly across each of our nine regions. For example, London saw a much greater level 

of attrition among treatment facilities during our sample period compared with other regions 

(see Figure A2 in the Appendix). While we restrict attention in our main analysis to a balanced 

panel (i.e. only including facilities that are present throughout the sample period), the closure 

of treatment facilities within a given region could nonetheless increase demands on all other 

healthcare facilities in the same region. We also include treatment facility fixed effects 

(𝛿்௥௘௔௧_ி௔௖௜௟௜௧௬) to account for any time-invariant differences across observational units in 

A&E attendance rates. 

Finally, it is important to note that our empirical strategy faces some limitations as a result of 

data availability. For example, we do not include day-of-the-week effects and national holiday 
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controls since our A&E attendance records are aggregated at a weekly level. However, since 

weather is independent of both the day-of-the-week and national holidays conditional on our 

seasonal controls, the exclusion of these controls does not necessarily threaten identification, 

but is likely to decrease the precision of our estimates.  

 

4. RESULTS  

In this section we present the results of our empirical analysis. The results for our preferred 

specification are presented in Table 3 in the form of contemporaneous and cumulative effects 

and are based on the model presented in Equation [1]. Additional specifications are reported as 

robustness checks in Appendix Tables A1 and A2. While the results are reported in levels in 

the tables, much of the subsequent discussion focuses on percentage changes for ease of 

interpretation. These are calculated by dividing the relevant estimated coefficient (or sum of 

coefficients) by the mean weekly attendance rate. For example, the interpretation of the 

contemporaneous effect for the 22-25oC temperature indicator bin – see Column (1) of Table 

3 – is as follows: a week with a maximum temperature greater than or equal to 22oC but less 

than 25oC is associated with 2.26 additional A&E attendances per 100,000 individuals, relative 

to a week with maximum temperature in the range 10-13oC. The percentage change is then 

calculated by dividing the estimated coefficient by the mean weekly A&E attendance rate 

(34.87 attendances per 100,000 individuals), giving an estimated 6.5% increase in weekly A&E 

attendances (2.26/34.87=6.5%). 

[Insert Table 3 about here] 

Taking the estimates of contemporaneous effects first, the results reported in Column (1) 

indicate significant effects of temperature variation on A&E attendance rates in England. They 

also suggest a contrast in the effects of low and high temperatures, with negative coefficients 
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(i.e. reductions in A&E attendances) estimated for cold temperature bins, and positive 

coefficients (i.e. increases in A&E attendances) estimated for higher temperature bins. The 

results in Column (1) also show a monotonic increase in the magnitudes of the estimated 

contemporaneous effects.  

These results seem to indicate that population health in England benefits considerably from 

colder weather. For example, the estimated contemporaneous effect of the 1-4oC temperature 

indicator bin suggests a 4.3% decline in A&E attendances, relative to the omitted 10-13oC 

category. However, the results in Column (2), which account for the cumulative effect on 

hospital attendance rates up to three weeks after the weather shock, indicate that the initial 

decline in attendance is offset in the subsequent weeks; the cumulative effect of the 1-4oC 

temperature indicator bin is not statistically different from zero. A similar pattern is found for 

each of the other colder temperature indicator bins, up to 10oC. 

In contrast, hotter temperatures are associated with increases in A&E attendances that persist 

up to three weeks after the shock. For example, weekly maximum temperatures in the 25-28oC 

range are associated with a contemporaneous increase of 7.6% in A&E attendances that if 

anything intensifies slightly in subsequent weeks, with a net total increase of 8.6%.  The highest 

temperature indicator bin [28oC, ) is associated with a 7.9% increase in A&E attendances and 

a net total effect of 7.5% over four weeks.  

Our main results are summarised visually in Figure 2. First, Panel A displays the 

contemporaneous percentage effect of each of the weekly maximum temperature indicator 

bins, showing a near linear relationship between temperature and contemporaneous weekly 

A&E attendances. In contrast, Panel B displays the cumulative percentage effect over a four-

week period for each of the temperature bins, showing significant effects only for higher 

temperature bins. In particular, we find no evidence of a statistically significant effect of colder 

temperatures on A&E attendances when allowing for the effects of the cold weather shock to 
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play out over a period of four weeks. On the other hand, for hotter temperatures, Panel B 

illustrates a net total increase (over the 4-week cumulative period) for weekly maximum 

temperature in the ranges 16-19oC and above. This is similar to the 31-day cumulative effects 

found in California (White, 2017), where temperatures in the ranges 75-80oF (23.8-26.7oC) and 

80+oF (26.7+oC) are associated with net total increases in ED attendances. Notably, however, 

we find net increases in A&E attendances in our data at lower levels of temperature, perhaps 

reflecting a relative lack of adaptation to heat in our context. The magnitudes of the net 

(cumulative) effects that we estimate are also somewhat larger in percentage terms than those 

found in White (2017). The overall shape of the estimated relationship here also differs 

somewhat from the U-shaped relationship generally found in the temperature-mortality 

(Deschenes and Greenstone, 2011; Barreca, 2012; Barreca et al., 2016) and temperature-

morbidity literatures (White, 2017; Karlsson and Ziebarth (2018). 

 [Insert Figure 2 about here] 

The analysis so far has focused on summarising the dynamic relationship between temperature 

and morbidity by reporting the contemporaneous and cumulative effects. However, it is also 

informative to consider the nature of the dynamic relationship over the 4-week window that we 

study and Figures 3 and 4 illustrate how A&E attendances are affected in the weeks following 

a temperature shock2. In each figure the dynamic association at relatively cold temperatures, 

i.e. the 1-4oC temperature indicator bin, is presented in Panel (A), while the same dynamic 

association for our hottest temperature category, the 28+oC temperature indicator bin, is 

presented in Panel (B). Figure 3 plots the estimated effects (reported in percentages, as 

described previously) for each week, with the contemporaneous effect represented by 𝑡 = 0 on 

the x-axis. Figure 4, on the other hand, plots the sum of all effects (again reported in 

                                                
2 These figures mimic the presentation of results in White (2017) to facilitate comparison of our findings with 
existing literature in a different climate context.  
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percentages) up to and including the relevant lag. For example, the point corresponding to one 

week after the temperature shock represents the sum of effects on contemporaneous 

temperature and the first temperature lag. 

[Insert Figures 3 and 4 about here] 

Starting with Panel (A) of Figures 3 and 4, the contemporaneous decline in A&E attendances 

for colder temperatures is clearly illustrated (note that the estimates at 𝑡 = 0 are equivalent 

across both figures). Figure 3 illustrates that this initial decline in attendances for weeks with 

cold temperatures is followed by increases in A&E attendances in subsequent weeks, while 

Figure 4 demonstrates how this translates into total net changes in A&E attendances over the 

4-week period. The initial decline in A&E attendances for weeks with cold temperatures is 

compensated by subsequent increases in attendances, such that the net effect is 

indistinguishable from zero in the weeks after the initial cold temperature shock. 

Turning to Panel (B) of Figures 3 and 4, where we focus on the hottest temperature bin, we see 

a large contemporaneous increase in A&E attendances followed by a much smaller but still 

statistically significant increase in the week following the hot temperature shock. In the 

subsequent two weeks the estimated coefficients are slightly negative but not statistically 

different from zero. Figure 4 shows how these weekly coefficients translate into net total A&E 

attendances over the 4 weeks. In contrast to the pattern observed for cold temperatures, the 

initial increase in A&E attendances for weeks with high maximum temperatures is not 

compensated by subsequent declines. In fact, we observe a compounding effect initially, as the 

net increase in A&E attendances following the hot weather shock is actually larger one week 

after the initial temperature shock. Over the subsequent two weeks the net effect declines 

somewhat, but remains positive and significantly different from zero.  

This pattern of effects for hotter temperatures on morbidity is similar to that observed by White 
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(2017) for ED visits in California, albeit with some notable differences in the level of hotter 

temperatures associated with increased A&E attendance in our study, and slightly larger 

magnitude effects (in percentage terms), as noted previously. However, this pattern of effects 

is quite distinct from the dynamic observations in several previous temperature-mortality 

studies. Essentially, the literature on temperature and mortality has found evidence of 

‘harvesting’, whereby an initial increase in mortality is offset by subsequent decreases, as the 

temperature shock brings forward by a short interval the mortality of some vulnerable persons 

(Deschenes and Moretti, 2009; Armstrong, 2006; Basu and Samet, 2002; Braga et al., 2001). 

Harvesting has also been found to play a role in the relationship between extremely hot 

temperatures and hospital admissions for heart diseases (Schwartz et al., 2004). We find some 

modest evidence of harvesting as the total estimated net effect of a hot temperature shock (after 

3 weeks) is smaller than the peak effect (after a week) and somewhat smaller than the 

contemporaneous effect, as demonstrated in Panel (b) of Figure 4. However, the net effect of a 

hot weather shock on A&E attendance remains substantial after three weeks, indicating that 

these effects are not primarily driven by harvesting.  

In Appendix Tables A1 and A2 we present the results of a series of robustness tests on our 

main findings. In Table A1, we compare results for the balanced and unbalanced panels. The 

results for the unbalanced panel, which uses all available data on 429 A&E facilities, remain 

qualitatively unchanged from our balanced panel model. In Table A2, we compare results from 

our baseline model with a version that includes analytical weights based on the average number 

of A&E attendances in our sample period. Again, the results are qualitatively very similar. 

Indeed, across all specifications considered in various other robustness checks, the broad 

pattern of results holds, with contrasting findings at either end of the temperature distribution.  
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5. DISCUSSION  

How do we reconcile and interpret these contrasting results across the temperature distribution? 

In this section, we discuss the possible behavioural mechanisms that could underpin the 

contrasting dynamic relationship between the extremes of heat and cold, and A&E attendances, 

that we observe in our data. A behavioural interpretation seems warranted here, particularly for 

the results on the effects of colder temperatures, where the initial decline in A&E attendances, 

followed by a compensating increase in attendances over subsequent weeks, seems difficult to 

reconcile with purely biological or physiological responses to cold weather.  

The estimated reductions that we observe in A&E attendances for weeks with colder weather, 

if driven by purely physiological responses, would suggest that cold weather is on average 

health improving at a population level, which seems unlikely3. Instead, it may be that the 

observed effects are driven primarily by behavioural responses to colder temperatures. This 

interpretation is reinforced by the findings in relation to the cumulative effects, which show 

that the initial reduction in A&E attendances during spells of colder weather is fully offset by 

increases in attendances in the subsequent weeks. In other words, the evidence is consistent 

with A&E visits being postponed during bouts of cold weather – a kind of ‘reverse-harvesting’ 

effect. 

In this context, two distinct behavioural effects could plausibly be associated with the outcomes 

we observe. The first is changes in willingness or propensity to attend A&E in response to 

variations in the weather. The second is differences in the composition of activities that people 

                                                
3 It has been observed in some cross-sectional studies comparing locations around the world that extremes of 
cold can be associated with better health environments, since frosts can kill pathogens leading to a lower 
prevalence of some diseases (Kiszewski et al., 2004). However, these are likely much more long-term effects of 
climate on disease environments. For short-run variations in weather, such as the weekly temperatures we study 
here, it seems more plausible to expect that cold weather might be damaging to health, for example because 
extremes of temperature (either cold or hot) place additional strain on the human body (Van de Vliert, 2007). 
Cold snaps are generally associated with increases in mortality (Deschenes and Greenstone, 2011; Barreca, 
2012; Karlsson and Ziebarth, 2018), while in northern latitudes at least cold weather is also associated with ‘flu 
season’.  
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engage in during periods of hot and cold weather. Taking the former effect first, any factor that 

increases the cost of treatment will tend to decrease the rate at which treatment is sought 

(White, 2017). This may include cold weather, if extremes of cold disrupt transport systems, 

or more generally if people experience disutility from going outside in colder weather. As a 

result, there may be a decreased willingness to seek treatment during periods of colder weather. 

This interpretation would be consistent with the idea of individuals delaying A&E visits during 

colder weather, and would seem to fit the pattern of results that we find in relation to the effects 

of cold weather on A&E attendances. 

The postponement of A&E attendances to periods with more favourable weather conditions 

might also help explain the observed increase in A&E attendances for hotter temperatures – in 

this case if people bring forward their attendance for treatment during warmer weather. Here, 

however, postponement cannot account for the totality of the results we observe at hotter 

temperatures. In particular, the monotonic increase in A&E attendance for progressively hotter 

temperature intervals seems unlikely to correspond to individuals preferring to attend for 

treatment as temperatures get progressively hotter. Similarly, if the results we find for hotter 

temperatures were largely due to temporal shifts in when people choose to seek treatment, we 

would expect to see initial increases in A&E attendances during periods of hotter weather offset 

by subsequent declines (as in the harvesting phenomenon observed in the temperature-

mortality literature). But this is not what we observe. If anything, the effect of hot weather on 

A&E attendance rates appears to intensify in the week after the hot weather shock and the 

cumulative effect remains large and statistically significant three weeks after the initial 

temperature shock (as per Panel (B) of Figure 4).  

Instead, it seems more plausible that the effects of hotter temperatures that we observe reflect 

actual changes in morbidity. This likely reflects, at least in part, the well-documented 

physiological effects of heat, which are also widely cited as being behind the observed 
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temperature-mortality relationship, particularly at the upper end of the temperature distribution 

(Deschenes and Greenstone, 2011; Barreca, 2012; Karlsson and Ziebarth, 2018). But genuine 

morbidity effects could also manifest in response to weather fluctuations as a result of the 

second behavioural effect that we consider – that is, if the overall composition of activities that 

people engage in changes in response to the weather.  

Previous research has shown that individuals’ time use responds significantly to the weather, 

with, for example, people found to substitute indoor activity for outdoor activity during periods 

of extremes of cold or hot weather (Graff-Zivin and Neidell, 2014) and levels of physical 

activity engaged in by adolescents found to increase modestly with temperature (Bélanger et 

al., 2009). While time spent outdoors and physical activity are widely acknowledged to be 

health promoting, at least in the medium to longer-term, the avoidance of these activities during 

periods of extreme temperatures might be thought of as health-preserving behaviour. Certainly 

it seems plausible that fewer accidents and physical injuries are likely to occur if people are 

spending more time at home and/or indoors (Kuitunen et al., 2020; Hampton et al., 2020). This 

postponement of activities could again be part of the underlying mechanism behind the results 

we observe in relation to the effects of cold weather on A&E attendance.  

For periods of hot weather, this behavioural effect seems less plausible given that we observe 

increases in A&E attendance during periods of hotter weather. The modest intensification of 

the effect of hot weather in the week after the temperature shock could be evidence of this type 

of postponement behaviour (of riskier activity), but it could equally be the result of symptoms 
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or illnesses caused by hotter temperatures in some cases not appearing until a week after the 

temperature shock4. 

Instead, it may be that in our context periods of hotter weather are associated with behaviours 

that are not health-preserving. Comparing the results that we observe for the dynamic 

relationship between extremes of heat and cold with A&E attendances suggests a differential 

behavioural response of individuals in England across the temperature distribution (as 

illustrated in Figure 2). It may be that individuals in England are not engaging in health-

preserving behaviours at the same rate for extremely hot temperatures as they do for extremely 

cold temperatures. Of course, this difference across extremes of heat and cold could partly be 

explained by the degree of longer-term adaptation to underlying climate conditions. For 

instance, individuals may be limited in their adaptive capacity due to current building standards 

being made to protect against cold weather but limited in terms of protection against the effects 

of extremely hot weather.  

An alternative, more behavioural explanation, may be that heatwaves often tend to be seen as 

‘good news’ stories in the UK5. As a result, behavioural responses to hotter weather in this 

context may involve increased activities that lead to higher exposure to extremely hot 

temperatures (i.e. socialising, going to the beach, etc.), and an associated increase in accidents, 

physical injuries, and illness. Of course, one should note that such activities, despite being 

potentially damaging to health, may still increase an individual’s utility. 

The discussion in this section is somewhat speculative; given limitations in the available data, 

such as a lack of information on disease category or reason for attendance, we are unable to 

test explicitly the behavioural mechanisms that we propose here. However, we can conclude 

                                                
4 This might be more likely in our data given the aggregation to weekly observations. For example, if the 
maximum weekly temperature for week t happened to be on the last day of the week, this could conceivably 
show up in an increase in A&E attendances at the start of the following week (i.e. in week t + 1).  
5 See, for example, https://www.mirror.co.uk/news/uk-news/uk-weather-met-office-delivers-26665166 
(accessed 28/04/2022). 
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by suggesting that the dynamic relationship we observe between cold weather shocks and A&E 

attendances appears likely to be driven largely by behavioural responses to colder weather, 

leading to ‘missing’ or postponed attendances in the week of the cold weather shock. For 

periods with hotter weather, on the other hand, it seems more plausible that the effects we 

observe derive from a combination of direct physiological effects of heat and behavioural 

responses to hotter weather. Further research is required to investigate the extent to which these 

behavioural interpretations of our findings are supported by the data. 

 

6. CONCLUSION  

This paper investigates the relationship between temperature and morbidity using data on the 

near-universe of A&E attendances in England for the period 2010-2015. We find that while 

cold weather is associated with lower contemporaneous A&E attendances, this effect appears 

to be entirely attributable to displacement of A&E visits to subsequent weeks. In contrast, for 

hotter temperatures, we find evidence of substantial contemporaneous increases in weekly 

A&E attendances that are not offset by subsequent reductions. Overall our results are consistent 

with differences in individual-level behavioural responses to extreme cold and hot temperatures 

in England. They also demonstrate, for the first time, a significant effect of hot temperatures 

on human health in a country with a relatively temperate climate. This highlights the potentially 

significant negative consequences of climate change for countries with cooler climates in terms 

of health outcomes and health system capacity. 
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Tables 

 

Table 1: Descriptive Statistics – A&E Attendances – Balanced Panel 

Variable Name Description Descriptive 
Statistics 

A&E_Rate Weekly A&E treatment facility attendance rate per 100,000 
regional population (Mean (SD)) 

34.87 (27.65) 

A&E_Attendances Number of A&E attendances (Total) 76,732,480 

Region = East Midlands (% of Total) 6.51% 

 = East of England (% of Total) 9.99% 

 = London (% of Total) 16.72% 

 = Northeast (% of Total) 7.39% 

 = Northwest (% of Total) 17.20% 

 = Southeast (% of Total) 12.17% 

 = Southwest (% of Total) 7.77% 

 = West Midlands (% of Total) 11.15% 

 = Yorkshire & Humber (% of Total) 11.10% 

Number of treatment facilities 156 

Number of weekly observations 37,897 

Source: Analysis of data from NHS (2022) and StatWales (2022). 
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Table 2: Descriptive Statistics – Temperature Variables 

Temperature 
Bins 

Description Percentage of 
Weekly Maximum 

Temperatures 

[1oC, 4oC) = 1 if weekly maximum temperature is greater than or equal to 1oC 
but less than 4oC, 0 otherwise 

1.2% 

[4oC, 7oC) = 1 if weekly maximum temperature is greater than or equal to 4oC 
but less than 7oC, 0 otherwise 

2.9% 

[7oC, 10oC) = 1 if weekly maximum temperature is greater than or equal to 7oC 
but less than 10oC, 0 otherwise 

10.6% 

[10oC, 13oC) = 1 if weekly maximum temperature is greater than or equal to 
10oC but less than 13oC, 0 otherwise 

20.4% 

[13oC, 16oC) = 1 if weekly maximum temperature is greater than or equal to 
13oC but less than 16oC, 0 otherwise 

14.1% 

[16oC, 19oC) = 1 if weekly maximum temperature is greater than or equal to 
16oC but less than 19oC, 0 otherwise 

15.5% 

[19oC, 22oC) = 1 if weekly maximum temperature is greater than or equal to 
19oC but less than 22oC, 0 otherwise 

15.5% 

[22oC, 25oC) = 1 if weekly maximum temperature is greater than or equal to 
22oC but less than 25oC, 0 otherwise 

12.3% 

[25oC, 28oC) = 1 if weekly maximum temperature is greater than or equal to 
25oC but less than 28oC, 0 otherwise 

5.2% 

[28oC,  ) = 1 if weekly maximum temperature is greater than or equal to 
28oC, 0 otherwise 

2.3% 

Source: Analysis of data from Met Office et al. (2021). 
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Table 3: Baseline Model Results – Balanced Panel 
 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 

Notes: Standard errors are clustered at the region level. *** significant at the 1% level.  

 

 

  

Temperature Bins (1) Contemporaneous Effects (2) Cumulative Effects 

[1oC, 4oC) -1.512*** 1.589 

 (0.445) (0.987) 

[4oC, 7oC) -0.819*** 0.245 

 (0.157) (0.383) 

[7oC, 10oC) -0.369 0.032 

 (0.171) (0.438) 

[10oC, 13oC) Base Category Base Category 

 - - 

[13oC, 16oC) 0.569*** 0.998 

 (0.167) (0.507) 

[16oC, 19 oC) 1.102*** 1.527*** 

 (0.238) (0.279) 

[19oC, 22 oC) 1.590*** 1.960*** 

 (0.296) (0.288) 

[22oC, 25 oC) 2.256*** 2.830*** 

 (0.336) (0.380) 

[25 oC, 28 oC) 2.651*** 3.014*** 

 (0.308) (0.364) 

[28oC,  ) 2.751*** 2.628*** 

 (0.360) (0.419) 

   

Mean Dependent Variable 34.87 34.87 

Rainfall Controls Yes Yes 

Hospital FEs Yes Yes 

Week & Region-Week FEs Yes Yes 

Year & Region-Year FEs Yes Yes 

Error Cluster One-way One-way 

N 37,433 37,433 
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Figures 

 

Figure 1: Distribution of Daily Maximum Temperatures 

  

Source: Analysis of data from Met Office et al. (2021). 
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Figure 2: Estimated Contemporaneous and Cumulative Effects 

 

  

(A) Contemporaneous Effects (B) Cumulative Effects 

 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 

Note: 95% confidence intervals represented by shaded region. 
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Figure 3: Estimated Weekly Effects – Lowest and Highest Temperature Bins 

 

  

(A) 1-4oC (B) 28+oC 

 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 

Note: 95% confidence intervals represented by shaded region. 

 

  



34 
 

Figure 4: Estimated Cumulative Effects – Lowest and Highest Temperature Bins 

 

  

(A) 1-4oC (B) 28+oC 

 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 

Note: 95% confidence intervals represented by shaded region. 
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Appendix  

 

Figure A1: Number of Treatment Facilities in NHS Data over the Study Period  

 
Source: Analysis of data from NHS (2022). 
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Figure A2: Number of Treatment Facilities in NHS Data over the Study Period by Region 
 

 
Source: Analysis of data from NHS (2022). 
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Table A1: Robustness Test – Balanced versus Unbalanced Panels 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 

Notes: Standard errors are clustered at the region level. *** significant at the 1% level. ** significant at the 5% level. 

  

 Balanced Panel Unbalanced Panel 

Temperature Bins Contemporaneous 

Effects 

Cumulative 

Effects 

Contemporaneous 

Effects 

Cumulative 

Effects 

[1oC, 4oC) -1.512*** 1.589 -1.310*** 1.498 

 (0.445) (0.987) (0.296) (0.658) 

[4oC, 7oC) -0.819*** 0.245 -0.545*** 0.783 

 (0.157) (0.383) (0.100) (0.370) 

[7oC, 10oC) -0.369 0.032 -0.267 0.157 

 (0.171) (0.438) (0.145) (0.394) 

[10oC, 13oC) Base Category Base Category Base Category Base Category 

 - - - - 

[13oC, 16oC) 0.569*** 0.998 0.432*** 0.858** 

 (0.167) (0.507) (0.105) (0.269) 

[16oC, 19 oC) 1.102*** 1.527*** 0.819*** 1.307*** 

 (0.238) (0.279) (0.102) (0.225) 

[19oC, 22 oC) 1.590*** 1.960*** 1.127*** 1.524*** 

 (0.296) (0.288) (0.162) (0.193) 

[22oC, 25 oC) 2.256*** 2.830*** 1.678*** 2.368*** 

 (0.336) (0.380) (0.172) (0.164) 

[25 oC, 28 oC) 2.651*** 3.014*** 2.012*** 2.692*** 

 (0.308) (0.364) (0.168) (0.248) 

[28oC,  ) 2.751*** 2.628*** 2.077*** 2.274*** 

 (0.360) (0.419) (0.208) (0.314) 

     

Mean Dep. Var. 34.87 34.87 26.54 26.54 

Rainfall Controls Yes Yes Yes Yes 

Hospital FEs Yes Yes Yes Yes 

Week & Region-

Week FEs 

Yes Yes Yes Yes 

Year & Region-

Year FEs 

Yes Yes Yes Yes 

Error Cluster One-way One-way One-way One-way 

N 37,433 37,433 62,845 62,845 
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Table A2: Robustness Test – Weighted versus Unweighted Models  

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 

Notes: Standard errors are clustered at the region level. *** significant at the 1% level. ** significant at the 5% level. * 
significant at the 10% level.  

 

 Unweighted Weighted by Hospital Size 

Temperature Bins Contemporaneous 

Effects 

Cumulative 

Effects 

Contemporaneous 

Effects 

Cumulative 

Effects 

[1oC, 4oC) -1.512*** 1.589 -2.089** 1.504 

 (0.445) (0.987) (0.662) (1.783) 

[4oC, 7oC) -0.819*** 0.245 -1.128*** 0.023 

 (0.157) (0.383) (0.238) (0.622) 

[7oC, 10oC) -0.369 0.032 -0.550* -0.139 

 (0.171) (0.438) (0.242) (0.595) 

[10oC, 13oC) Base Category Base Category Base Category Base Category 

 - - - - 

[13oC, 16oC) 0.569*** 0.998 0.762** 1.445 

 (0.167) (0.507) (0.248) (0.817) 

[16oC, 19 oC) 1.102*** 1.527*** 1.498*** 2.041*** 

 (0.238) (0.279) (0.364) (0.403) 

[19oC, 22 oC) 1.590*** 1.960*** 2.133*** 2.457*** 

 (0.296) (0.288) (0.403) (0.386) 

[22oC, 25 oC) 2.256*** 2.830*** 2.987*** 3.645*** 

 (0.336) (0.380) (0.473) (0.471) 

[25 oC, 28 oC) 2.651*** 3.014*** 3.452*** 3.753*** 

 (0.308) (0.364) (0.402) (0.536) 

[28oC,  ) 2.751*** 2.628*** 3.508*** 3.185*** 

 (0.360) (0.419) (0.495) (0.507) 

     

Mean Dep. Var. 34.87 34.87 34.87 34.87 

Rainfall Controls Yes Yes Yes Yes 

Hospital FEs Yes Yes Yes Yes 

Week & Region-

Week FEs 

Yes Yes Yes Yes 

Year & Region-

Year FEs 

Yes Yes Yes Yes 

Error Cluster One-way One-way One-way One-way 

N 37,433 37,433 37,433 37,433 


