FV3000 Operation Manual

Your Vision, Our Future

Contents

Image Acquisition	
Starting the System	— 4
Visual observation with microscope	— 5
XY Image Acquisition	— 6
XYZ Image Acquisition	- 8
XYT Image Acquisition	— 9
4D(XYZT)Image Acquisition	— 10
XYT Image Acquisition (with Z drift compensation) $-$	— 11
Multi Area Time Lapse	- 12
Multi Area Time Lapse using Map Image (1)	- 14
Tips of Image Acquisition —	- 17
Exiting the system	- 18
Configuration	- 19
Processing Image	
2D view and operation	- 21
3D view and operation	- 22
Creating the movies ————	- 23
Processing: Projection —————————————	- 24
Exporting the image	- 25
Reloading and saving Observation Methods	- 26

Spectral Imaging				
Lambda Series (acquiring by single channels) ———	28			
Lambda Series (acquiring by multiple channels) ——	30			
Processing: Unmixing (1)	32			
Processing: Unmixing (2) —	33			
Processing: Unmixing (3) —	34			

Image Acquisition

Starting the system

Visual observation with microscope

★ Transmitted DIC observation

*Tap the button on the TPC to select the objective for observation.

- Tap the light path selection button of the touch panel controller.
- ② Tap the □A button.
- ③ Tap the [DIA] tab.
- ④ Tap the [Elements] tab and check whether the [Polarizer] is "IN".
- 5 Insert the DIC prism slider.

Adjust the DIC contrast

- ⑥ Open the shutter of the transmission illumination light on the touch panel controller.
- ⑦ If necessary, tap the [Brightness] tab and adjust the brightness.
- ⑧ Adjust the focus and contrast.

★ Fluorescence observation

- *Tap the button of the TPC to select the objective for observation.
- Tap the light path selection button of the touch panel controller. (or select "Ocular" in [Ocular] Tool Window.)
- ② Tap the **EPI** button.
- ③ Tap the [EPI(or EPI1) tab.
- ④ Select the mirror unit suitable for the fluorescent probe for observation.

- ⑤ Open the shutter of the reflected illumination light on the touch panel controller.
- 6 Select the ND filters to adjust the brightness.
- *Brightness can be adjusted by rotating the light volume adjustment dial of the light source.

Rotate the light volume adjustment dial 7 Adjust the focus using the focus knob.

XY Image Acquisition(1)

Microscope PM	T Setting ×
V PMT	
Mode :	VBF Lambda
Average:	None Line Frame 3 Times
Sequential Scan	None Line Frame
Dye & Detecto	r Select
Phase1 Pha	ise2 10 Reducing noises by
Confocal Apertu	re Auto 219 🗣 um Averaging.
A: Di	50 100 200 400 600 800
Ally Disk x 1.00	
HSI	D1 H5D2
1150	
🖌 Group 1 🔤 C	H1 Adjusting Confocal
-	Aperture.
Group 2	
Laser ND Filter:	None 10%
P1 ✓ CH1	Alexa Fluor 4 🔽 HSD1 500 - 540 nm G-1
488	0.0 % Laser Intensity
	500 V A Sensitivity
Gain	1.000 x
Offset	Alexa Fluor 5 X HSD2 570 - 570 pm G-2
✓ 561	
HV	500 V I F
Gain	1.000 × <
Offset	0 % < >
P2 CH3	DAPI HSD1 430 - 470 nm G-1
405	0.0 %
Gain	1.000 x < >
Offset	0 % ≺ ⊳
So So Dye List Dye Recent Dyes : Dye Dye List Areas Thoresso Areas Thoresso So Cy2 48 Registered Dyes : Dye Violet Gyan Blue 44 Blue So Yellow So Yellow So	70 00<

① Select "VBF" in the [PMT Setting] Tool Window.

Assigning the detector to channel

- ② Press the Dye & Detector Select button on [PMT Setting] Tool Window to open the [Dye & Detector Select] dialog box.
- ③ Press the All Clear button to reset the Assigned Dye.
- ④ Double-click the name of the fluorescence dye to observe.

Virtual Channel Scan

This mode allows to acquire multiple CH image whose channel number is larger than the number of detector.

- (5) When registering a fluorescence dye, TD channel is registered automatically. If you don't need, double-click the TD channel to cancel it.
- 6 If you want to observe with multiple phases using the virtual channel scan, press the Add Phase button to add the phase. And drag&drop the selected "Dye" to the observation channel list of the phase you want to add.

\wedge	-				X	
Syn List					Dye	AddPla
Dye	10000	on interest	1	Chargest		Deterizor I
				11449-2		Deane
				(Claynet)	Live .	Courter
Det	BRAKE	3 170000				
			1.0			

O After setting all channels, press the [OK] button.

Adjusting the live image

- ⑧ If you want to acquire multiple channel image, select Sequential scan "Line" in the [PMT Setting] Tool Window.
- Press the window.
 Adjust focus and set Laser Intensity(%),
 Sensitivity(HV), Gain and Offset on [PMT setting]
 Tool Window.
- If you use virtual channel scan, press Phase1 Phase2 to switch phases. On both phases, adjust focus and set Laser Intensity(%), Sensitivity(HV), Gain and Offset.

<u>[Hi-Lo Mode]</u> pixels of intensity 4095 are shown in red. Pixels of intensity 0 are shown in red. **u5 確認(英語のほう)** 元島 ゆき; 03.02.2017

XY Image Acquisition(2)

Ocular LSM Imaging ×	
▼ Scan Settings	
$\bigcirc \bigcirc $	
Scanner:	
Type: 💽 Galvano 🔘 Resonant	
Mode: 🔵 OneWay 🔘 Roundtrip	
Interlace: O OFF O 2x O 4x	_ (1)
Speed: 2.0 us/pixel	
Image Size:	
Aspect Ratio: 1:1 4:3	
Scan Size: 512x512	
High voltage correction: ON OFF	
Pixel: 2.0 usec Line: 1.180 msec Frame: 57.820 msec	
▼ Area Settings	
<i>с э</i>	(13)
Rotation 0.0 Reset	49
Pan X: 0.00 🖨 um Reset	
Pan Y: 0.00 🗣 um Reset	
	_
e, x1	_

Acquire ×
Normal Sync Sequence MATL
Imaging Eleach Stimulation Start
SERIES DONE Append Append NEXT 1
LSM C:\Users\olympus\Desktop 2017xyz
Current scan condition
Total scanning time : 0:00:01.09

Setting the scanner

- On [LSM Imaging] Tool Window, select the scan method in [Type] and [Mode].
 ※See 23 pages for details.
- ① Set scanning speed.
- ⁽¹⁾ Specify "Image Size" to set the scan area.
- ③ Set the zoom, rotation and clip scan if needed.

DIC observation

- 1. Insert the DIC slider to microscope.
- 2. Register the TD channel.
- 3. Set the laser to be used for observation.
- 4. Adjust the sensitivity(HV).
- 5. Adjust the contrast by rotating the knob of the DIC slider.

⁽See page 3 5 in left side.)

F	р1 ҐСН2 📕	2	TD	G-1
	✓ 488 ▼	3.5	% • •	
	ΗV	280	\forall \bullet	
Л	Gain	1.000	x • •	
7	Offset	0	% 🔺 🕨	

Starting Acquisition

 Select [Normal] tab in [Acquire] Tool Window.
 Press the button to open the dialog box, and select the folder to save the images.
 *The acquired images are saved automatically.

Serial number is added at the end of file name like "***_0001" and "***_0002".

(5) Press 🕞 LSM Start button to start acquiring the image.

Attention

Check [LSM] in [Series] Tool Window whether it is selected "OFF" [Z] and [Time] .

XYZ Image Acquisition

Series × Microscope
– LSM –
Time : ON OFF
Z : ON OFF
[1]
Series: 10.003 sec
V 7 Section
Motor Start/End Range 2
Current: 0.00
Register
Move
Slices: 9 🗘
Step Sizer 12.00
Optimize
Start: 0.00 🖨 End: 96.00 🖨
Bogister (4)
START <=> END
Move
Each G shifts the position by the value
entered r Step Size
Each click shifts the position by $\frac{1}{2}$ the value
entered for Step Size.
•••••••••••••••••••••••••••••••••••••••
-
Acquire ×
Normal Sync Sequence MATL
Imaging Bleach
Stimulation
Start
SERIES DONE Append
APPEND NEXT 1
LSM C:\Users\olympus\Desktop
0617xyz-
Current scan condition
Current scan condition Z position : 7 / 25
Current scan condition

*Before starting the following procedure, make adjustments for XY imaging. (refer to page 4-5.)

Setting Z series

- 1 Select "ON" in [Z] on [Series] Tool Window.
- ② Select "Start/End" in [Motor] on [Z section].

Register start/end position

- ③ Change the Z position by rotating the focusing knob or pressing the button. Press the Register button in [Start] at the Z position to start acquiring the image.
- ④ Change the Z position and go on to press the Register button in [End] at the Z position to end acquiring the image.
- (5) Enter a value in [Slices] or [Step Size].
 Setting one will set other automatically.
 Pressing the Optimize button, both numerical values "Slices" and "Step Size" is optimized.

Starting Acquisition

Select [Normal] tab in [Acquire] Tool
 Window. Press the button to display the dialog box, and select the folder to save the images.

Press the R LSM Start button to start acquiring the image.

Finishing Acquisition

8 Finishing acquisition, APPEND NEXT

buttons blink.

u

Press the SERIES DONE button to complete the image acquisition. If you want to Additional images under the same condition, enter the number of additional acquisition and press the APPEND NEXT button. After the image is acquired, press the SERIES DONE button.

- **u6 新しく追加。要チェック。** 元島 ゆき; 08.02.2017
- **u7** Step Sizeにしたけど大丈夫だろうか? 内容・英語ともに。 元島 ゆき; 08.02.2017

XYT Image Acquisition

Acquire ×	
Normal Sync Sequence MATL	
Imaging Iseries DONE APPEND NEXT	100 A
LSM C:\Users\olympus\Desktop 🔂 🖻	
Current scan condition	
Total scanning time : 0:00:00.66	V
Series × Microscope	
LSM Time: • ON • OFF Z : • ON • OFF	
Series: 65.779 msec	
▼ Time Lapse	
LSM Total: 0:00:00.66 Interval: FreeRun Scan: 0:00:00.06 Rest: 0:00:00.00 Cycle: 10 ♣ LPM:Not enabled	

*Before starting the following procedure, make adjustments for XY imaging. (refer to page 4-5.)

Setting Time Series

- Select "ON" in [Time] on [Series] Tool Window.
- ② Set the interval to acquire the image in [Interval] and [Cycle] on [Time Lapse].

If you attempt to set the shorter than the time displayed in [Scan] in [Interval], "FreeRun" appears. In this case, the interval to acquire the image is the time displayed in [scan].

Starting Acquisition

③ Select [Normal] tab in [Acquire] Tool Window. Press the button to display the dialog box, and select the folder to save the images.

*The acquire images are saved automatically. Serial number is added at the end of file name like "***_0001" and "***_0002".

④ Press the LSM Start button to start acquiring the image.

Finishing Acquisition

Finishing acquisition, APPE blink.

buttons

Press the SERIES DONE button to complete the image acquisition. If you want to Additional images under the same condition, enter the number of additional acquisition and press the APPEND NEXT button. After the image is acquired, press the SERIES DONE button.

4D Image Acquisition

	Acquisition	Viewer	cellSens
Acquire ×	vor Sequence M.	ΔΤΙ	-
		sh	
🕞 LSM St	art		
SERIES DO	NE Apgend		
APPEND N	EXT		
LSM D:\Im	nages\Demo data at T(OBIC\2016 🕞 🗸	5 6
imaq	e001		
Current scan o	condition		
Total compin	a time 0:04:10	98	•
Series × PM ⁻	ſ/laser adjustment in Z	-series	
LSM	1		
Time : ON			
Z : 🔍 OF			
Series: 501.95	3 msec		
▼ Time Lanse			
LSM Total: (0:04:10.98		5
Scap: 0	•00:00 50 Roct	0:00:00 or	
Cyde: 50)0 🖨 LPM:Not enable	d	
▼ Z Section			
Motor: 🔵 Sta	art/Enc 🔿 Range		
Curren10.00	(Drigin: 0.00	
		Register	
		lices: 57 🕏	
¥	s of s	tep Size: 0.25 🕏	
		Optimize	
Start: 5270.8	5	End: 5256.85 🖨	2
Regist	e START <=> EN	D Register	

- *Before starting the following procedure, make adjustments for XY imaging. (refer to page 4-5.)
- ① Select "ON" in both [Z] and [Time] on [Series] Tool Window.

Setting Z series

- ② Changing the Z position, register the Z position of Start/End.
- ③ Set either [Slices] or [Step Size].(See p.6 for details.)

Setting Time series

 ④ Set the interval to acquire the image in [Interval] and [Cycle] on [Time Lapse].

Starting Acquisition

- Select [Normal] tab in [Acquire] Tool Window. Press the button to display the dialog box, and select the folder to save the images.
 - *The acquire images are saved automatically. Serial number is added at the end of file name like "***_0001" and "***_0002".
- Press the LSM Start button to start acquiring the image.

Finishing Acquisition

⑦ Finishing acquisition, buttons blink.

SERIES DONE APPEND NEXT

Press the **SERIES DONE** button to complete the image acquisition. If you want to Additional images under the same condition, enter the number of additional acquisition and press the **APPEND NEXT** button.

After the image is acquired, press the button.

XYT Image Acquisition (with the Z drift compensation)

Series Microscope ×
► Objective Lens
▶ Parfocal adjustment
▼ ZDC Control
ZDC DM: 1n Out
Search Zone Upper Limit 200.00 🕏 um Lower Limit -100.00 🕏 um
One Shot AF Offset 0.00 ♥ um Find
Find focus
Continuous AF
Z Drift Compensation in series scan ON OFF
Coverslip position um
MATL O Sequence Manager
Drift Value um Reset AF Status Off
▼ Z Limit Setting
Current Z position: 0.00
Register current position as near limit
Near limit: 6500.01 🖨 Refresh
Apply Entered parameter to near limit
Series 🛪 Microscope
LSM Time • ON • OFF

[Attention]

If [Rest] is shorter than 31 seconds, Z drift correction works only first scanning. For every time working, set the [Interval] so that the [Rest] to be 31sec or longer. * In advance, prepare to use ZDC.

(See page 22 for details.)

* Set for acquiring the series image.

Setting Near limit

- ③ Select [Microscope] in [Tool Window] menu. Press the Register current position as near limit button to set the Near limit to all objective lenses in [Z limit Setting].
- ④ Pressing the Register button to current position as 0 position.

ZDC Setting

- (5) Set [ZDC DM] in [ZDC Control] on [Microscope] Tool Window to "In".
- 6 Specify the search zone of the coverslip position in [Upper Limit] / [Lower Limit] in [Search Zone].
- ⑦ Set [Z Drift Compensation in series scan] in [ZDC Control] in [Microscope] Tool Window to "ON".
- 8 Adjust focus and press the <u>Find</u> button of [Coverslip position]. The coverslip top surface position is acquired. When the Z drift compensation is successful, the buzzer sounds beeps once only. If the Z drift compensation is not successful, the buzzer sound beeps three times.
- When performing the Z drift compensation continuously during series scan, press the <u>Continuous AF</u> button in [ZDC Control] in [Microscope] Tool Window. As this function performs the drift compensation in realtime during series scan, the focusing can be at a high-speed.
 - · High-speed scanning \rightarrow Use continuous AF
 - If Rest time is longer then 30 seconds
 - \rightarrow You had better not use Continuous AF
 - : Don't operate 🗇.
- 9 Press Susset in [Normal] tab in [Acquire] Tool Window to start acquisition.

♦ motorized stage ♦

<u>Multi Area Time Lapse</u> <u>Imaging Acquisition</u>

Live 0617xyz 20Xxyz	
> Analysis ROI: 🗖 🖸 🔏 🖒	$\langle c \rangle < c$
Live [Livex2] [Live×4]	其 1:1 2
Live 0617xyz 20Xxyz 0617xyz- Reference LUT Grid/Profile Property Map Stop stage S Calibration CH1	Analysis ROI:
Stage position X: 1735[um] Y: -643[um]	
Method LSM Imaging Stimulation	S.T.S.
Synchronization	
Register	C. S. S.
Claptay order on map Proto Map Clast Clast	Tanie Stitching
 ✓ -119320 5823220 1 L5M 00 ✓ -2837240 1187600 1 L5M 00 	0:0007.63 0:00:07.63

- *Before starting the following procedure, make adjustments for XY imaging.
- ① Press the button in [Live] Window.
- ② Select the [Map] sub pane.

Registering the group of MATL

- ③ Move the specimen to a desired position and adjust the live image. If you want to acquiring the XYZ image, make adjustments for Z series additionally.
- ④ Press the button to register the position and its image acquisition condition.

[Attention]

All acquiring conditions(XY position, focus position, laser intensity, sensitivity, series setting, and on.) are registered when you press the button. So, Register after you finish adjusting all conditions.

- S Repeat the operation of 3 and 4 to register for multi area timelapse.
- 6 Set the interval to acquire the image in [Interval] and [Cycle] on [Repeat Setting].

- Select [MATL] tab in [Acquire] Tool Window.
- 8 Press the button to display the dialog box, and select the folder to save the images.
- 9 Press Sunt button to start acquiring the image.

motorized stage <u>Multi Area Time Lapse</u> (with the Z drift compensation)

Live 0617xyz 20Xxyz 0617xyz-	
Stop stage	< Analysis ROI:
	Live Live>
CH1	Tile Single
	CH1 Alexa Fluor
-	
-	
	Part and
-	
	1.5.2.5.
	S-5-5-5
Stage position X: 1735[um] Y: -643[um]	
▼ Area Registration	
Method LSM Imaging Stimulation	Ser and
Synchronization	
Register	Chief Color
▼ Registered Area List	
	120 30
Display order on map Protocol Map	The second
Reset software origin Save As	1.1.1
Epshie Yoos Voos Num of area Method Time	and the second
	1000
Registered Area List	
F 🗳 🥇 📲 🔿 🗊	
Display order on map Protocol Map	

Minimum cycle times: 00:00:53.92

LPM: Not enabled

FreeRun

s ÷tim

*Before starting the following procedure, make adjustments for XY imaging.

ZDC Setting (See page 10 for details.)

♦ZDC

- ① In [▼Z Limit Setting], press the Register current position as near limit button to set the Near limit to all objective lenses.
- ② In [▼Z Section] in [Series] Tool Window, press the Register to set current position 0.
- ⑤ Set [ZDC DM] in [▼ZDC Control] in [Microscope] Tool Window to "In" and place the dichroic mirror of ZDC in the light path.
- 6 Specify the search zone of the coverslip position in [Upper Limit] / [Lower Limit] in [Search Zone] using the Origin coordinate of Z as a base point.
- ⑦ Set [Z Drift Compensation in series scan] in [ZDC Control] in [Microscope] Tool Window to "ON".
- 8 Adjust focus and Press the button of [Coverslip position]. The coverslip top surface position is acquired.
- When the Z drift compensation is \geq successful, the buzzer sounds beeps once only. If the Z drift compensation is not successful, the buzzer sound beeps three times.
- 9 Press the button to register areas.
- 10 set [Cycle interval] and [Cycle].

Starting Multi Area Time Lapse

- ① Select [MATL] tab in [Acquire] Tool Window.
- 12 Press the button to display the dialog box, and select the folder to save the images.
- ⁽¹⁾ Press Set button to start acquiring the image.

♦ motorized stage ♦

Multi Area Time lapse using Map Image (1)

Live 0617xyz 20Xxyz	$\langle 2 \rangle$
Live [Livex2] [Live×4]	其 1:1 2
Live 0617xyz 20Xxyz 0617xyz- 2 Reference LUT Grid/Profile Property Map Stop stage So Calibration CH1 CH1 Ch1	Analysis ROI: [3]
Stage position X: 1735[um] Y: -643[um] Area Registration Method LSM Imaging Stimulation Synchropyzation	
Registered Area List Open Clear	
Save As Enable X pos Y pos Num of area Method Time	Map Clear 5
of area Method Time Stitch a LSM 00:00:03:29 12 古へスクロール	OverlayMap Comme

*Before starting the following procedure, make adjustments for XY imaging.

- ① Press the button in [Live Window], the sub pane appears.
- ② Select [Map] tab.

Create the map

- ③ Bring the image into focus and adjust acquiring parameters using the low magnification objective lens.
- ④ Press the button to register the position and acquiring parameters.

Attention

All parameters register by pressing the button. When acquiring a map image, Check [LSM] in [Series] Tool Window whether it is selected "OFF" [Z] and [Time].

⑤ Scroll to the right in registered are List and Ticking [OverlayMap].

Map image acquisition

- 6 Select [Acquire] Tool Window in [Tool Window] menu and select [MATL] tab.
- ③ Press the 🕞 button to display the dialog box, and select the folder to save the images.
- Press button to start acquiring the image.

Finishing the acquisition, map image is displayed in [Map] tab.

♦ motorized stage ♦

<u>Multi Area Time lapse</u> using Map Image (2)

<u>Acquiring the stitched image</u> <u>using Map Image</u>

① Refer to page 12, acquiring the map image.

Define the area of acquisition

- ② Move the specimen to desired position using the map image as reference. Double-clicking on the map, the motorized stage moves to the position where double-clicked.
- ③ Press the 🗰 or 🔛 or 🖾 button to register the area.

<u>3 types</u>

Registering an arbitrary matrix area
 Registering a rectangular ROI in the map image

display area.

Registering a polygonal ROI in the map image display area.

[Attention]

All acquiring conditions(XY position, focus position, laser intensity, sensitivity, series setting, and on.) are registered when you press the settion. So, Register after you finish adjusting all conditions.

④ Select [MATL] tab in [Acquire] Tool Window. Press substitution to start acquiring the image.

Processing to stitch

- Select the image tab acquired and press the button.
- 6 After the image is displayed in the dialog box, press the Execute button.

*If you ticked the [Stitching] in [▼Registered Area List] before acquiring the image, process to stitch automatically.

Tips for Image Acquisition

■ For the High speed scanning ■

*Check whether [Scan Speed] is set "2.0µs/pixel".

1) Changing the scanner

* Use the Resonant scanner

* Use the Roundtrip Mode

When using High speed scanner, the signal gets weaker and the noise increases. So, refer to [■For brighter imaging■] and [■For the lower noises■] and combine them.

2) Selecting the smaller image size

3) Reducing the scanning area

* Use "Clip scan" to limit the acquiring area.

Scanning time is displayed in this line. Pixel/Line/Frame

★ High voltage correction: This mode is the function that the sensitivity is adjusted automatically to keep brightness when scan speed is changed.

■ To make image more brighter ■

4) Increasing laser intensity / Increasing sensitivity(HV)

*If sufficient brightness cannot be obtained even when the sensitivity(HV) increased to 600V or higher, combine another method in additional to this method.

5) Increasing the C.A.

When increasing the C.A., the Z-axis resolution gets worse.

6) Slowing down the scan speed

%Select "OFF" in [High voltage correction].

■ To lower the noise level ■

7) Using Average

This method averages specified number of images during image acquisition. Select the "Line" or "Frame" and

enter the number of image to be averaged.

8) Slowing down the scan speed※Select "ON" in [High voltage correction].

🔵 VB	f ()	Lam	bda		_
No	ne 🔘	Line	🔵 Frame	2 Times	7)
🕘 No	ine 🔘	Line	Frame		Г
	No	None	None Line	None Line Frame None Line Frame	None Line Frame 2 Times

400

600

onfocal Aperture 🗛 👌 🔶 um

ry Disk x 1.00

5

Exiting the system

Exiting the software and PC

- ① Select [Exit] in the [File] menu to exit the software.
- ② Select the "Shut down" in Windows Start Menu.

Shipping Tool	and a second	EV OLYMPUS FV315-SW	
PV315-5W •		File Tool Window Too	ls Windo
Remote Desktop Connection N315-07	Documents Pictures	Open	•
Command Prompt	Music Computer	Save	•
Ruoview_UsageHistory	Devices and Printers	Save As	· · · ·
Sticky Notes +	Default Programs Help and Support	Export	Ctrl+E
Windows DVD Maker		Export multiple files	1
All Programs Search programs and files	Shut down	Exit	
Arstant 🏉 🎇 🗿 👖	🗷 🍕 考		

Turning OFF the power

Touch Panel Controller (TPC)

 ③ Tap the "OFF" on display of TPC. Then press the TPC main switch.
 *Do not long-press the main switch.

Laser controller

 5 Turn the laser combiner to OFF.
 ※Rotate start key of the Power Supply and set the switch to OFF.

Mercury burner for the light source

6 Long-press(2 seconds) the lamp switch on the front side of the light source to turn OFF the Mercury burner.

Central power

 $\ensuremath{\overline{\mathcal{O}}}$ Switch off the central power.

<u>*When using the immersion oil, clean</u> the objective lens.

Configuration

Changing the objective lenses

* Exchange the objective lens to be used.

- Select [Configuration] in [Tools] menu. The [Configuration] dialog box appears.
- ② Select [Microscope] tab.
- ③ Select [Objective Lens].
- ④ Select the name of the mounted objective lenses.
- (5) Specify the optical elements to be switched by interlocking during the switchover the objective lens.
 - * Select the DIC which is same number as the objective lens. example: 30X→IX2-DIC30

1<u>00X</u>→IX2-DIC100

6 Press the K button.

Specifying the micro plate

- ① Select [Configuration] in [Tools] menu. The [Configuration] dialog box appears.
- ② Select [Preference] tab.
- ③ Select [Plate].
- ④ Select the micro plate to be used.
- 5 Press the or button.

For Z drift compensation

- ① Select [Configuration] in [Tools] menu. The [Configuration] dialog box appears.
- ② Select [Microscope] tab.
- ③ Select [ZDC].
- ④ Specify the coverslip type to be used
- ⑤ Enter directly the thickness of the coverslip to be used.
- 6 If you use DIC, tick the checkbox6.
- ⑦ Press the 🛛 button.

Processing Image

2D view and operation

3D view and operation

Opening the file and displaying 3D image

Open and activate the Z series image. Select [Volume] tub to display 3D image.

3D image setting

Press the button and select [Volume Setting] in Viewer Vindow] menu. [Volume Setting] Tool Window is displayed. Select [View] tab in [Volume Setting] Tool Window.

Selecting the algorithm

Two algorithm ①MIP

The MIP method reflects the maximum intensity of the object preferentially on the image. Therefore, the area with the high intensity even in the object can be extracted.

②AlphaBlend

The AlphaBlend method reflects the intensity on the top surface of the object preferentially to the image. Therefore, the context of the object is displayed property.

■ Cut

Displays the yellow frame in the image constructed in 3D. Dragging this frame with the mouse will display only the image in the frame.

Slice

Creates the cross-sectional view sliced in XY/XZ/YZ directions in the image constructed in 3D, and displays the image sliced in each direction. The cross sections can be moved by dragging the mouse.

Creating the movie

*Opening the file and displaying 3D image

- Press the viewer button and select
 [Volume Setting] in the [Tool Window] menu.
- ② Select [Movie] tab in [Volume Setting] Tool Window.
- ③ Select "▼Key Frame" in [Movie Item] and press the Add button. "Sequence1" is shown below "▼Key Frame".
- ④ Select "Sequence1" in [Movie Item].

Registering the Key Frame

- (5) Move the 3D image in [Image] window by dragging and right-click at the desired status. Right click and select [Add Key Frame], then the current display status is registered and "Key Frame x" is displayed in [Id] in [Volume Setting] Tool Window.
- Repeat (5) and register the statuses you want to register them, as Key Frames.
- When you press the Pay button, the volume images between Key Frames are interpolated automatically to play through the movie.

Exporting movie

- 8 Select "Sequence xx" in [Movie Item] and select the movie you want to export. Press the Export button. The [Export] dialog box appears.
- Press the button to select the folder of the save destination.
 Set the [File name] and [Frame rate] by entering them directly.
- 1) Press the Save button.

Processing: Projection

Exporting the image

*The image can be exported in the file format which can be used by other software.

A. Exporting a single image

- Right-click on the image to be exported. Select [Export] in the menu displayed. The [Export] dialog box appears.
- ② The destination folder for the image to be exported is displayed in ②. If necessary, press the B button to display the dialog box and change the destination folder.
- ③ Set the file name and select the file type in [Save as type].
- ④ Select the channel to be exported in [CH/Range]. When exporting the series images, set the range to be exported and the number of the steps in ④.
- (5) When general purpose format is selected in [Save as type] in (3), set whether or not overlay the ROI on the image to be exported.
- 6 When general purpose format is selected in [Save as type] in ③, select the method to export channels and the bit color.

RGB Color with Merge 🔽 24bit Full Color 🕇 Amount

- TICKING THIS CHECKDOX will Output the properties (acquisition conditions when acquiring the image) in text.
- 8 Press the button. The image will be exported. Save

B. Exporting multiple images

- In the [File] menu on the software screen, select [Export multiple files]. The [Export multiple files] dialog box appears.
- Select the method to export images. Press the button to select the folder or the file be exported.
- Select the save destination and file format to be exported in [Save as Type].
- 12 4~7
- IPress the button. The image will be exported. Save

Reloading and saving Observation Methods

Save / load the observation method

- ① Select the [Observation Method] in [Tool Window] menu.
- * Each functions
 - :to load the acquisition parameters and set to FV

eto save the current conditions and add to the list

:to delete the condition from the list

ð

Ż

: to sort the list

: to export/import the methods

Check the acquiring condition

- ① Press the sub button and open sub pane.
- ② Select the [Property] tab and check the acquiring conditions.

Load acquisition parameters from acquired image

In [Property] in sub pane, press the button.

Spectral Imaging

Lambda series (acquiring by a single channels)

*Before starting the following procedure, make adjustments for imaging. (refer to page 4-8.)

Changing to Lambda mode

 Select "Lambda" in [Mode] in [PMT setting] Tool Window.

Select one channel to be used

- ② Press the Dye & Detector Select button. The [Dye & Detector Select] dialog box appears. Press the All Clear button to reset the Assigned Detector.
- Select the [Channel] tab in [Dye & Detector Select] dialog box. Select the "High Sensitive Detector CH1" in [Detector List], and press Add button. Press the or button to close the [Dye & Detector Select] dialog box.
- ④ Tick the checkbox of the wavelength of the excitation laser to be used.

Setting DM and SDM

- Select [Lightpath] in [Tool Window] menu. [Lightpath] Tool Window appears.
- 6 Select [LSMScanner] tab in [Lightpath] Tool Window. Press the DM button to display the dichroic mirror list. Select "DM" which reflects the wavelength of the excitation laser selected in ④.
- ⑦ Check the light path whether the light path is set properly. See the figure(A). (SDM→MIRROR→MIRROR→HSD1)

Setting "Band width" and "Step Size"

In [PMT Setting] Tool Window, set the width of the wavelength for which the spectral image acquisition is performed per each step in [Band width], and set the interval between the wavelength to start acquisition in the next step in [Step size].

Lambda series (acquiring by a single channels)

PMT Setting ×		
▼ PMT		
Mode :	🔘 VBF 🛛 🔵 Lambda	
Average:	None Line Frame 4 Times	
Dye & Detecto	or Select	
Confocal Apertu	ure Auto 217 um	
Airy Disk x 1.00		
Laser ND Filter:	None 0 10%	
405 0.	0 % 🖃 💽	
445 0.		
✓ 488 10.		
514 0.	.0 %	
561 0.	.0 %	
594 0.	0 % 🖂 🖂	
640 0.	0 % 1 1	
12 _{H1}	HSD1 600 - 610 nm G-1	
HV	500 V	
Gain	1.000 ×	
Offset	0 %	
🔽 Lambda Setti	ing	•••
9	drag the gray cube to set the wavelength range.	
400	500 600 700 800	
Band Width	10 🔹 nm 🔪 linking	
Step Size	10 🖨 nm 🗸 You can enter the value directl	y
CH1:	496 🗣 - 616 🖨 nm 12 🗣 steps 🕻 ★)	
Total:	12 steps	

Setting the wavelength

 9 Set them by dragging the mouse on the profile display area or set the value of wavelength directly to [CH1]. (★)

Adjusting the live image

- IPress the start scanning.
- In ① in left figure, enter the value of wavelength directly, to find the most efficient (brightest) range. Entering the value in the left box, changes the value in the right box based on Bandwidth automatically.
- Adjust the laser intensity, sensitivity(HV),Gain and Offset. Press the HILD and adjust not to saturate the image intensity.

Acquiring the image

- ③ Select [Normal] tab in [Acquire] Tool Window. Press the D button to display the dialog box, and select the folder to save the images.
- *The acquire images are saved automatically. Serial number is added at the end of file name like "***_0001" and "***_0002".
- Press LSM Start button to start acquiring the image.

Attention

Check [LSM] in [Series] Tool Window whether it is selected "OFF" [Z] and [Time] .

Lambda series (acquiring by multiple channels)

*Before starting the following procedure, make adjustments for XY imaging. (refer to page 4-5.)

Changing to Lambda mode

 Select "Lambda" in [Mode] in [PMT setting] Tool Window.

Select one channel to be used

- ② Press the Dye & Detector Select button. The [Dye & Detector Select] dialog box appears. Press the All Clear button to reset the Assigned Detector.
- ③ Select the [Channel] tab in [Dye & Detector Select] dialog box. Select the detector to be assigned to the observation channel in [Detector List], and press Add button. Press the button to close the [Dye & Detector Select] dialog box.
- ④ Tick the checkbox of the wavelength of the excitation laser to be used.

Setting DM and SDM

- ⑤ Select [Lightpath] in [Tool Window] menu. [Lightpath] Tool Window appears.
- 6 Select [LSMScanner] tab in [Lightpath] Tool Window. Press the DM button to display the dichroic mirror list. Select "DM" which reflects the wavelength of the excitation laser selected in ④.
- Check the light path whether the light path is set properly.

Setting "Band width" and "Step Size"

In [PMT Setting] Tool Window, set the width of the wavelength for which the photometry is performed per each step in [Band width], and set the interval between the wavelength to start acquisition in the next step in [Step size]. (See page 26 "Standard" for details.)

Lambda series (acquiring by multiple channels)

PMT Setting ×	
▼ PMT	
Mode : 💽 VBF 💿 Lambda	
Average: ONone OLine OFrame 4 Times	
Dye & Detector Select	
Confocal Aperture Auto 230 🗣 um	
Airy Disk x 1.00	
Laser ND Filter: None 10%	
405 0.0 % 🔺 🕨	
445 0.0 %	
✔ 488 23.9 % ◀ ►	
514 0.0 % Change laser, band width or step size 12	
561 0.0 % Change laser, band width or step size	
✓ 594 20.0 % < ►	
□ 640 0.0 % Change laser, band width or step size	
✓ CH1 EGFP HSD1 500 - 520 nm G-1	(11)
HV 500 V 🔺 🕨	Ŭ
Gain 1.000 x < >	(12)
Offset 0 % < >	<u>u</u>
✓ CH2 Alexa Fluor 5 HSD2 600 - 620 nm G-1	(11)
Offset 0 %	12
▼ Lambda Setting	
drag the gr	av
9 Cube to set	the
wavelength	range
400 500 600 700 800) (
Band Width 20 🌩 nm linking	
Step Size 10 🗢 nm 🗸 You can enter the value di	rectly
CH1: 495 🗘 - 585 🗣 nm 8 🌩 steps 🌘 🛧	
CH2: 600 🜩 - 680 🜩 nm 7 🌩 steps	
Total: 15 steps	
Acquire ×	

Setting the wavelength

⑨ Set them by dragging the mouse on the profile display area or set the value of wavelength directly to [CH1]. (★)

*You cannot select the laser which includes ±5nm of the excitation wavelength in the photometry range of each channel.

Adjusting the live image

- IPress the button to start scanning.
- In (1) in left figure, enter the value of wavelength directly, to find the most efficient (brightest) range. Entering the value in the left box, changes the value in the right box based on Bandwidth automatically.
- Adjust the laser intensity, sensitivity(HV),Gain and Offset. Press the Hi-Lo and adjust not to saturate the image intensity.

Acquiring the image

- ③ Select [Normal] tab in [Acquire] Tool Window. Press the D button to display the dialog box, and select the folder to save the images.
- *The acquire images are saved automatically. Serial number is added at the end of file name like "*** 0001" and "*** 0002".
- Press LSM Start button to start acquiring the image.

Processing: Unmixing (1) Spectral Image Unmixing ~by specifying dyes

Analysis X Volume Setting Graph Table Single process Ive processing Processing tem Spectral Decomolution Roling Average Ratio Concentration Projection Z Gaps Edit Image Append Images	Multiple processing
Input / Output setting Processing Item Input Output O Spectral Deconvo. Tambda Output Ne S	utput Type Channel Name aw Image Spectral Deconvo.
	Value True False CH1 ✓ CH1 Spectral Image Umm Open File. Remove DVF Iambda UD3 Iambda 0003 Iambda 003 Iambda 003
	©Select the mode ®Select the file
All frame (juridola) True * detauced: * detauced: Mode Diff & Clarest Off & Clarest Off & Clarest Diff	 ★You can save Dye profile data which is specified by ROIs. (How to use this file? →See page 32⑦)
Landel Emission 2000a - 6 Mon	Ord 6072 Alless Floor 358

- ① Press the <u>Viewer</u> button to switch to "Viewer mode".
- ② Select [Analysis] in [Tool Window] menu. [Analysis] Tool Window appears.
- ③ Select [Single process] mode, press the [Post Processing] button.

- ④ Press the Remove button to reset the assigned item and select [Spectral Deconvolution] in [Processing Item].
- In [Input] in [Input / Output setting], select the image for image processing.
- 6 In [Mode] in [processing Property], select "Spectral Image Unmixing".

- ⑦ Specify multiple ROIs on the regions where only the target fluorescence dye locates to acquire the spectral data for image processing.
- ⑧ In [DYE0 ROI File Name], select the file name of the image on which the ROI was specified in ⑦.

100 laneareau		Aller	
Category	perti-	(Vinite	
 Basic 			
		Spectral Image Unmi	
	DVED BOI File Name	Lambela (()(y)
	DVED ROLChannel Name		
		10114	
		a chi	
	OTED NOLINOER	140	
	DYE9 Dye Profile Save Folder		
	DYE1 HOLFile Name	lambda	
	DYE1 ROI Channel Name	CH1.	
		CH1	
		28	
			(10)

① Repeat ⑧ 9 to register all ROIs. Press the Process button to start the fluorescent separation process.

Processing: Unmixing (2) Blind Unmixing ~by setting the number of dyes

nalysis 🗙 🛛 Volume !	Setting Graph Table		
(2)	Single process	Multiple process	
	Live processing	Post processing	<
Batch Processing	Graph		
			4
Proce Snactral Deconu	ssing Item		Remove
Rolling Average			Save
			- Out
Concentration			
Z Gaps			\
 Edit Image 			\sim
Append Image			
nput / Output setti	ng		
Processing Item	Input Output O	utput Type Channel Name	
Spectral Deconvo.	Jambda Output1 N	w Image Spectral Deconvo	
Mach Strong Deck Social Add			
	(5)		
Reception Property			
rocessing Property			Previe
Category		Value	
T Darie			
	All Frame (lambda)		
 Advanced 			
-			
	Target Channel	CHI	
		✓ CH1	
	Mode	Blind Unmixing	6
	Number of SpectralData[111]	4	\bigcirc
			(7)
	DYE1 Dye Profile Save Folder		\sim
	DYE2 Dve Profile Save Folder		
	DVE2 Due Profile Save Folder		
	Background Cargodian		
	Background Correction		_
	Program	(Processe Ste
	Hugicas.		310
	and a star		
review Object.			
rame Index: L			
hannel (Before):			
hannel (After):			

- ① Press the <u>Viewer</u> button to switch to "Viewer mode".
- Select [Analysis] in [Tool Window] menu. [Analysis] Tool Window appears.
- ③ Select [Single process] mode, press the [Post Processing] button.

- ④ Press the Remove button to reset the assigned item and select [Spectral Deconvolution] in [Processing Item].
- (5) In [Input] in [Input / Output setting], select the image for image processing.
- ⑥ In [Mode] in [processing Property], select "Blind Unmixing".

Category	ltem	Value
▼ Basic		
	All Frame (lambda)	
▼ Advanced	Double-click	
	Target Channel	CH1
	G	🗹 СН1 🗸
	Mode	Blind Unmixing
	Number of SpectralData[1_11]	4
	DYE0 Dye Profile Save Folder	
	DYE1 Dye Profile Save Folder	
	DYE2 Dye Profile Save Folder	
	DYE3 Dye Profile Save Folder	
	Background Correction	

- Set the number of dyes in [Number of SpectralDate].
- 8 Press the **Process** button to start the fluorescent separation process.

Processing: Unmixing (3) Normal Unmixing ~by specifying dye dates

Analysis × Volume	Setting Graph Table		
2	Single process	Aultiple process 3	1
Batch Processing	Graph		
Proc	essing Item	Remov	
Rolling Average		Load	
Concentration			3
Z Gaps			
 Edit Image Append Image 			
Input / Output sett	ing		
Processing Item	Input Output Out	put Type Channel Name	
Spectral Deconvo	a lambda Output1 Nev	(Image Spectral Deconvo)	
	(5)		
			. 4
Processing Propert	У	Previe	w
Category	Item	Value	
Basic	All Frame (lambda)	True	
		CH1	5
		Normal Unmixing	
	Background Correction	False (7)	
			6
	Progress :	Process Sto	PP I
Preview Object:	lambda		
Frame Index: L	1 /11		
Processing Item:			
Channel (After):			
enaminer (Arres).			

- 1) Press the **Viewer** button to switch to "Viewer mode".
- Select [Analysis] in [Tool Window] menu. [Analysis] Tool Window appears.
- ③ Select [Single process] mode, press the [Post Processing] button.

- Press the Remove button to reset the assigned item and select [Spectral Deconvolution] in [Processing Item].
- ⑤ In [Input] in [Input / Output setting], select the image for image processing.
- ⑥ In [Mode] in [processing Property], select "Normal Unmixing".

Category	Item	Value
 Basic 		
	Target Channel	
	Mode	Normal Unmixing 🔽
		Spectral Image Unmixing
	Background Correction	6) Blind Unmixing

- ⑦ In "!DYE0 Dye Profile Load File", select the first dye profile among from dye data. (See page 30.)
- (8) Select the all dye data.
- 9 Press the Process button to start the fluorescent separation process.

www.olympus.co.jp

オリンパス株式会社

		又曰:百美川川住地		
東	京	〒163-0914 東京都新宿区西新宿2-3-1 新宿モノリス	# 03 (6901) 4040	
札	幌	〒060-0034 札幌市中央区北四条東1-2-3 札幌フコク生命ビル	₽ 011 (222) 2553	
静	問	〒420-0851 静岡市葵区黒金町11-7 三井生命静岡駅前ビル	# 054 (255) 6245	
新	潏	〒950-0087 新潟市中央区東大通り2-4-10 日本生命新潟ビル	🕿 025 (245) 7338	
松	本	〒390-0815 松本市深志1-2-11 松本昭和ビル	🕿 0263 (36) 5332	
金	沢	〒920-0024 金沢市西念1-1-3 コンフィデンス金沢	m 076 (222) 3438	
名さ	屋	〒460-0003 名古屋市中区錦2-2-2 名古屋丸紅ビル	₽ 052 (201) 9698	
大	阪	〒532-0003 大阪市淀川区宮原1-6-1 新大阪ブリックビル	1 06 (6399) 8004	
松	ш	〒790-0003 松山市三番町7-1-21 ジブラルタ生命松山ビル	# 089 (931) 2650	
広	島	〒730-0004 広島市中区東白島町14-15 NTTクレド白島ビル	☎082 (228) 1922	
福	問	〒810-0004 福岡市中央区渡辺通り3-6-11 福岡フコク生命ビル	1883 (111)	

C/C Olympus Customer Information Center お客様相談センター で.0120-58-0414 FAX 03 (6901) 4251 ※携帯・PHS からもご利用になれます。

受付時間 平日8:45~17:30

取扱販売店名

住所	
店 名	
担当者	