

University of Galway

Carbon Footprint Report*

2017 (Baseline), 2018, 2019, 2020, 2021

*Rev 1

Authors & Contact Details

Prof Jamie Goggins; jamie.goggins@universityofgalway.ie Thomas Adams; t.adams4@universityofgalway.ie

Abstract

A net-zero greenhouse gas (GHG) emissions organisation reduces its emissions following science-based pathways, with any remaining GHG emissions attributable to University of Galway being fully neutralised by like-for-like removals of emissions from the earth's atmosphere, without purchasing carbon credits, in line with global efforts to limit warming to 1.5°C. The boundary of a net zero target for University of Galway includes global scope 1, 2 and 3 emissions attributable to University of Galway, as defined in The Greenhouse Gas Protocol – A Corporate Accounting and Reporting Standard. GHG emissions and the impact of University of Galway on climate can be measured in terms of equivalent CO₂ emission. This report outlines the methodology used to quantify the GHG emissions attributable to University of Galway and presents the results of the carbon footprint assessment that has been carried out for University of Galway for 2017-2021. Gaining an understanding of the sources and quantities of GHG emissions attributable to University of Galway is an imperative first step in the creation of a climate action plan for University of Galway and setting a 1.5°C aligned science-based target for University of Galway and its value chain, so that the University can put in place a carbon management plan and roadmap to reduce GHG emissions attributable to University of Galway to net zero.

Table of Contents

1	Exe	ecutive Summary4					
2	Intr	roduction	6				
3	Lite	erature Review	7				
	3.1	Intro – GHG Protocol Corporate Standard	7				
	3.2	Organisational & Operational Boundaries	7				
	3.3	Base Year & Recalculation Policy	8				
	3.4	Scopes	9				
4	Me	thodology	11				
	4.1	Scope 1 & 2	11				
	4.2	Scope 3: Categories 1 & 2 Purchased Goods & Services & Capital Goods	12				
	4.2	2.1 Construction of New Student Accommodation Block 2021	16				
	4.3	Scope 3: Category 3 Fuel and Energy Related	16				
	4.4	Scope 3: Category 5 <i>Waste</i>	17				
	4.5	Scope 3: Category 6 Business Travel	17				
	4.6	Scope 3: Category 7 Commuting	19				
	4.7	Scope 3: Other <i>Water</i>	21				
5	Ne	xt Steps	22				
	5.1	Carbon Footprint Improvements	22				
	5.2	Roadmap to Net-Zero	22				
6	Со	nclusion	24				
Re	References25						
A	opend	lix	25				

Acknowledgements

Michael Curran, Alan Lambe, Dean Pearce, Gearóid Ó Broin, Eoghan Clifford, Stephen Canny

List of Figures

Figure 1 - University of Galway GHG Inventories 2017-2021, showing 2021 outlier (new
building)4
Figure 2 - Scope 1, 2 and 3 Emission broken into upstream activities, on-site activities and
downstream activities10
Figure 3 - Decision Tree for Categories 1 & 2 for deciding an emissions calculation method 13
Figure 4 - Commuting Emissions showing student/staff split for 2018, 2020 and 202120
Figure 5 – University of Galway Carbon Footprint shown in terms of area of native woodland
trees, i.e. an offsetting scenario24

List of Tables

1 Executive Summary

For this Greenhouse Gas (GHG) Inventory, the Greenhouse Gas Protocol Corporate Standard methodology was used (GHG Protocol, 2020). The graph and tables below summarise the 2017 - 2021 GHG emissions under scopes 1, 2 and 3 for University of Galway. The figures are reported in total kilo-tonnes of carbon dioxide equivalent (KtCO2e), in KtCO2e per full time equivalent (FTE) of staff and students and per meter squared of gross internal floor area (GIA).

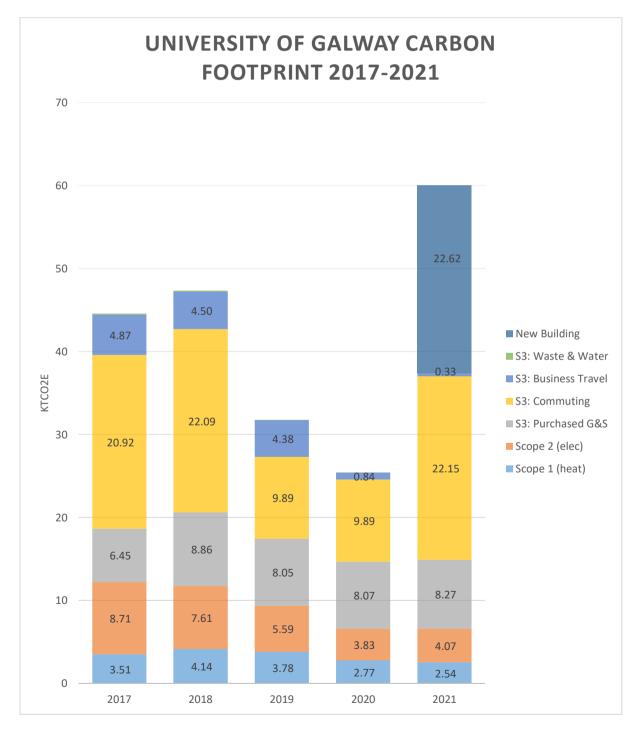


Figure 1 - University of Galway GHG Inventories 2017-2021, showing 2021 outlier (new building)

Year	Staff (FTE)	Students (FTE)	GIA (m2)	Change in Emissions/2017
2017	2,125.94	17,196.50	155,090	-
2018	2,218.90	17,552	155,090	+ 6.2%
2019	2,230.99	18,094	155,090	- 28.7%*
2020	2,387.60	17,687	155,090	- 43%*
2021	2,488.54	18,649.50	155,090	-14.4%**

Table 1 - University of Galway Full Time Equivalent (FTE) figures, campus area and change in emissions year on year

*Commuting and business travel emissions dropped due to covid, explaining these large decreases.

**In 2021 a new student accommodation block was commissioned, explaining some of the increase.

Table 2 - University of Galway GHG Inventory Summary 2017-2021 (kilo-tonnes of CO2 equivalent)

	Emissions (KtCO2e)					
Emission Source	2017	2018	2019	2020	2021	
Scope 1	3.51	4.14	3.78	2.77	2.54	
Scope 2	8.71	7.61	5.59	3.83	4.07	
New Building 2021					22.62	
S3: Purchased G&S	6.45	8.86	8.05	8.07	8.27	
S3: Commuting	20.92	22.09	9.89	9.89	22.15	
S3: Business Travel	4.87	4.50	4.38	0.84	0.33	
S3: Waste & Water	0.14	0.14	0.08	0.03	0.02	
Total (KtCO2e)	44.59	47.34	31.78	25.43	60	
Total/FTE (tCO2e/FTE)	2.31	2.39	1.56	1.27	2.84	
Total/GIA (tCO2e/m2)	0.29	0.31	0.20	0.16	0.39	

2 Introduction

The 'University of Galway Strategic Plan 2020-2025' and the 'University of Galway Sustainability Strategy 2021-2025' commits to "providing leadership to inform the transition to a sustainable future through our teaching, research actions and impacts; and to developing a roadmap to move ambitiously towards carbon neutrality by 2030". In line with the 'Climate Action and Low Carbon Development (Amendment) Bill 2021' in Ireland, University of Galway commits to pursue and achieve no later than 2050, the transition to being a university with net-zero greenhouse gas emissions that is climate resilient, biodiversity-rich and environmentally sustainable. This document presents the findings from the creation of a carbon footprint baseline for University of Galway. This baseline will feed into the creation of a climate action plan and a roadmap to net-zero for the University, the first step in University of Galway's journey. With a baseline understanding of how much carbon the institution produces, the roadmap will set out how the University will decarbonize over the coming years.

As Ireland moves towards a pathway to net zero emissions, it is becoming clear that effective reporting on carbon producing activities is a step of major importance. The Greenhouse Gas Protocol Corporate Standard (WRI, 2020a) is the most commonly used carbon reporting method, which is why it is the method chosen for this GHG report. It has also been decided to report a full scope 1, scope 2 and scope 3 carbon footprint, as recommended in the GHG Protocol. Carbon footprint is a term that is commonly known, but less commonly fully understood. Many organisations who estimate their carbon footprint focus on measuring emissions from their own operations and electricity consumption, which is scope 1 and scope 2. Basically, an organisation's gas/oil bill (scope 1) and electricity bill (scope 2). These two scopes are relatively easy to report on, which is why these are the scopes that many organisations begin with. But as more organisations push to include the final scope (scope 3 - supply chain), it's becoming clear that more often than not, this scope makes up a larger portion of an organisation's carbon footprint than scope 1 and 2 combined. Scope 3 is a much more difficult scope to report on, which is part of the reason why organisations opt for only reporting on scope 1 and 2. One of the goals of this report is to present a methodology for reporting scope 3 emissions for an Irish University's GHG inventory, to encourage other institutions to adopt a method and begin scope 3 reporting.

3 Literature Review

3.1 Intro – GHG Protocol Corporate Standard

The methodology followed in this report was acquired from The Greenhouse Gas Protocol Corporate Standard Training Webinar (WRI, 2020a), Scope 2 Guidance Training Webinar (WRI, 2020b) and Scope 3 Training (WRI & WBCSD, 2011). This methodology is the most commonly used, as can be seen in other Irish University GHG reports such as University College Cork (Poland, 2020), and Dublin City University (Morrissey et al., 2020). The Scope 1 and 2 training consisted of four webinars which are available for free online as well as four exercise documents that are also freely available. The Scope 3 training consisted of eleven modules of learning, each of which involved a series of short videos and supplementary reading and exercises.

3.2 Organisational & Operational Boundaries

The main steps in the GHG Protocol Corporate Standard process are setting organizational boundaries, determining operational boundaries within each scope, defining a base year, defining a significance threshold for recalculation, and carrying out the calculations using various methods and tools. This section of the report will go through all of these steps bar the last, which is shown in the methodology section. The first step in the GHG Protocol is to define the organizations' boundaries. The method of setting an organizations' boundaries is determined by choosing a consolidation approach. The possible consolidation approaches are as follows:

- 1. Equity Share
- 2. Control
 - a. Financial Control
 - b. Operational Control

The equity share approach refers to using the percentage of ownership that an organization has on a structure/operation as the percentage of emissions to account for from that structure/operation. The control approach can be done in one of two ways. Either the organization having control over the financial policies of a structure/operation or over the operational policies of a structure/operation. If the organization has control, then it must account for all of the emissions from this structure/operation. The financial control approach has been chosen for University of Galway as financial data is easily accessible. For future reference, The GHG Protocol recommends using the equity share approach and one of the control approaches for a more thorough analysis. The Operational Boundary of this report is the same of University of Galway's Energy Review, i.e. University of Galway Main Campus. Buildings that are included within the scope of the University of Galway ISO50001 EnMS are documented and included in a thorough review and updated on the University of Galway Energy Manual and Dashboard. There are 58 buildings included that have a total internal floor area of 155,090 m².

3.3 Base Year & Recalculation Policy

2017 was chosen as the base year for University of Galway. The protocol recommends using the furthest back year which still has all the data needed to complete a comprehensive assessment. So, if an organization intends to complete a full scope 1, scope 2, and scope 3 assessment, there must be data for a complete assessment of these three scopes in the chosen base year and all years following. 2017 was chosen as it aligned with another assessment that the University was going through, a submission for a STARS ranking. For the STARS application, much of the data was required over a three year period, meaning 2017-2019 was used. This set the base for the GHG reporting data. A recalculation policy must also be defined. This policy is determined by deciding on a significance threshold. The significance threshold is a percentage of change in emissions which is deemed significant for a recalculation of the base year emissions. The percentage is up to the organization to decide but generally a figure between two and five percent is used, for this report 5% will be set as standard. The reason for this policy is to ensure the base year remains accurate. The change in emissions can occur due to a few reasons:

- Structural changes
- Calculation method changes
- Discovery of errors in method

It is important to note that structural changes in the organization does not mean new/organic growth. It means to measure the change in emissions if the organization obtains a new structure which existed and emitted greenhouse gases during the base year. Hence if the new

structure obtained emitted enough during the base year to change the total carbon footprint by over 5% then the base year must be recalculated with this structures' emissions included.

3.4 Scopes

Scope 1 accounts for all direct emissions of greenhouse gases within the organizations' boundaries. These can come from four sources:

- Stationary combustion of fuel to generate electricity, heat, or steam.
- Mobile combustion of fuel for the transportation of materials, waste, or employees.
- Physical or chemical processing such as waste processing, cement production etc.
- Fugitive emissions from unintentional leakages such as refrigeration/HVAC units

Scope 2 accounts for indirect emissions from the purchase of electricity. These can be calculated on a location-based and/or a market-based approach. The location-based approach is determined using the grid average emission factor and the consumption data from the grid. The market-based approach is derived from contractual information depending on what suppliers the organization is associated with and accounting for any guarantees of origin or power purchase agreements that can offer a zero-emission electricity supply.

Scope 3 emissions, also known as value-chain emissions, are emissions associated with in-direct emissions not including Scope 2. The reason it is called value-chain is because Scope 3 report on emissions from cradle-to-grave. Cradle-to-grave encapsulates cradle-to-gate and end-of-life emissions into one. In order to categorise these emissions, the GHG Protocol starts by splitting the value chain into upstream (cradle-to-gate) and downstream (end-of-life). Using paper as an example of this, if a company buys an A4 pack of paper, the cradle-to-gate emissions are those associated with the sourcing of the materials, the processing of the wood into paper and the transport of the paper to the organization. Then the end-of-life emission are associated with what happens to the paper once the organization seeks to dispose of it, such as the emissions associated with transporting the paper to the recycling plant and the emissions from the recycling process. Figure 2 below shows a graphic taken from the GHG Protocol Corporate Standard which shows Scope 1, Scope 2, and Scope 3 emissions as well as Scope 3 broken into the eight upstream categories and the seven downstream categories.

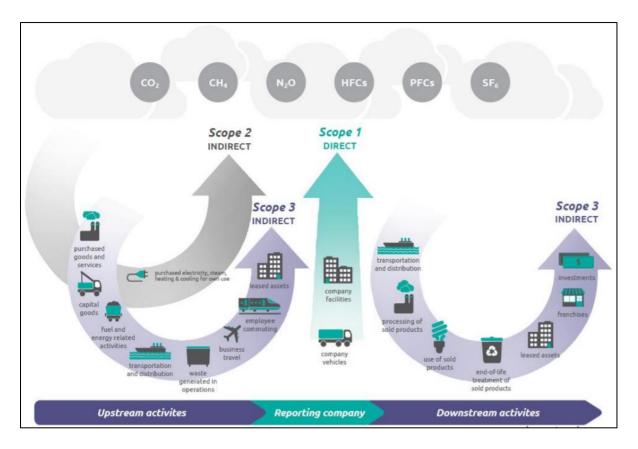


Figure 2 - Scope 1, 2 and 3 Emission broken into upstream activities, on-site activities and downstream activities

It is important to prioritize categories based on which activities are expected to have the most GHG emissions, as not all categories will be relevant. In this report, the prioritization of categories was done using The GHG Protocol Scope 3 evaluator tool. This tool can give a rough estimation of Scope 3 emissions based on financial data (Quantis, 2019), which can be plugged straight into this online calculator to give results based on an archive of global average emission factors. Table 3 below shows the seven scope 3 categories selected for reporting in this baseline inventory.

#	Category	Data Source	Notes
1	Purchased goods and services	Finance Office	Goods/services cradle-to-gate emission
2	Capital goods	Finance Office	Capital goods cradle-to-gate emissions
3	Fuel and energy-related activities	Finance Office	Fuel & Electricity purchased
5	Waste generated in operations	Estates Office	Waste treatment emissions
6	Business travel	Finance Office	Travel paid for by University
7	Employee commuting	Survey	Employee & Student commuting
-	Other	Buildings Office	Water Consumption Emissions

Table 3 – Scope 3 categories expected to have a significant carbon footprint.

4 Methodology

The methodology section goes into detail on how activity data was acquired for each scope and what emission factors were used for each section of the inventory.

4.1 Scope 1 & 2

The Energy Team at University of Galway have been carrying out annual energy reviews since 2006 to comply with the requirements of the ISO5001: 2018 Energy Management System (EnMS) standard, clause is 6.3. The main purpose of this energy review is to analyse University of Galway's energy usage and consumption based on measurement and other data i.e. the identification of current types of energy use, the evaluation of past and present energy usage and the analysis and identification of the Significant Energy Users (SEUs). Buildings that are included within the scope of the University of Galway ISO50001 formal Energy Management Systems Standard (EnMS) are documented and included in a thorough review and updated on the University of Galway Energy Manual and Dashboard. There are 58 buildings included that have a total internal floor area of 155,090 m2. The management team measure electrical and thermal energy performance using key performance indicators; kWh (e)1 and kWh (th)2 per metre squared of treated floor area per annum. These are termed Energy Performance Indicators (EnPIs), and are being used to set targets for enhanced energy performance improvement plans. University of Galway operate a formal Energy Management Systems Standard (EnMS) which is compliant with the requirements of ISO50001: 2018. The Energy Review is carried out once a year and also in response to major changes in facilities, equipment, systems or energy using processes. The methods and criteria used to develop each of the Energy Reviews are outlined in the document and the results are documented and retained/maintained as records under our Document Control Procedure.

Notes on Energy Review document: In the University of Galway Energy Review Document in 2017, it is reported that 31.7 tCO2e came from solar thermal energy. This has not been included here as solar thermal is renewable and does not produce emissions. In the University of Galway Energy Review Documents of 2018 and 2019, woodchips are reported as having zero emissions. This is due to them being sourced renewably as biomass. However, for this report, biomass is not considered carbon neutral, so emissions are reported. In 2018 there are 210.9 tCO2e and in 2019 there are 89.7 tCO2e, associated with solar PV and solar thermal combined, which are reported as negative emissions. For this report, renewables are considered carbon zero not carbon negative.

	(tCO2e)				
Scope 1 & 2 Fuel	2017	2018	2019	2020	2021
Electricity Imports	8,709	7,608	5,594	3,828	4,067
Gas Imports	2,799	3,212	3,087	2,163	2,379
LPG	21	160	153	95	119
Gasoil	86	362	290	88	169
Wood pellets	369	121	110	151	62
Road Diesel	36	21	15	44	40
Biodiesel	197	265	128	0	3
Total	12,216	11,749	9,376	6,369	6,838

Table 4 - Scope 1 and 2 Emissions Summary

4.2 Scope 3: Categories 1 & 2 Purchased Goods & Services & Capital Goods

Categories 1 and 2 are reported under the same heading as current and capital expenditure have not been separated for emissions reporting, meaning this section represents all procurement by the University. Figure 3 below is taken from the GHG Protocol training and it shows a thought process or "decision tree" for deciding how to calculate these sections. As can be seen there are four options, the supplier-specific method, hybrid method, average-data-method and the spend-based method. The supplier-specific method is best practice as it is most accurate. It involves acquiring product-level cradle-to-gate GHG inventory data from supplier, which the University would then apply to every product purchased from said supplier. The hybrid method involves getting as much supplier-specific data as is available and then using one of the other two methods to fill in the gaps. The average-data-method makes use of any available activity data that isn't spend data, such as weight, volume etc. The spend-based method involves setimating emissions for goods and services by multiplying the amount spent on a good/service by an industry average emission factor. This meant collecting the university's historical expenditure data, which came in the form of detailed product code

reports from the university's Procurement Office. These contain a history of the university's procurement through Agresso, the procurement system. In these spreadsheets, product codes are used to identify the category of supply, service or works that is being purchased. A product code is typically an abbreviation of the category of product or service, followed by a number, e.g. PRINT101, STAT101, etc. The words before these numbers represent the high level category, such as PRINT being "Binding Services, Printing Services, Graphic Design Services, and Publishing Services". Then the numbers define more specific products within these categories, PRINT104 being "Pre-printed Stationery (Letterhead, Business Cards)" for example.

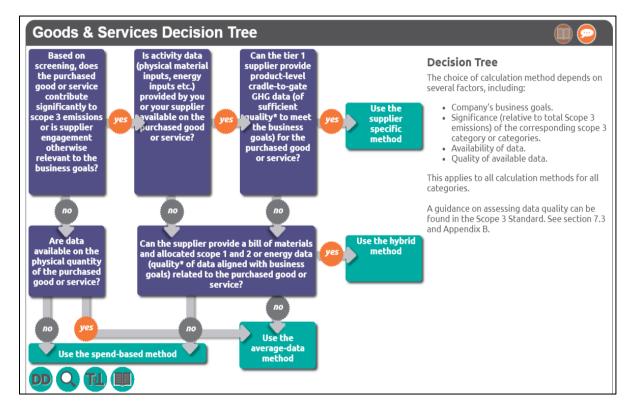


Figure 3 - Decision Tree for Categories 1 & 2 for deciding an emissions calculation method

As mentioned in section 3.4 of this report, it is very helpful to prioritize scope 3 categories. Creating a first draft of scope 3 emissions can be quickly achieved using the online Scope 3 evaluator tool provided by the GHG protocol (Quantis, 2019), which will highlight roughly how much emissions are coming from each category using the spend-based method. It's important to note that the GHG Protocol have announced that this tool will be removed from their website at some point in 2023, as it is using a relatively outdated 2009 emission factor database. However, for this project it was still useful for providing a "traffic light" assessment

and showed us that there were five main categories of product codes where most of the emissions were coming from, as can be seen in Table 5.

Product Code	Description						
BUILD	New Buildings Programmes, Building Maintenance, Furniture/Fitout,						
	Facility Management Services, Security						
SERVE	Advertising, Professional Services, Memberships, Training Courses,						
	Photography, Patent Fees, Florists, Document Management, Laundry,						
	Consultancy Services, HR Services, Insurance, Communications, Public						
	Relations, Venue/Meeting Rooms, Website Design and Services						
LAB	Laboratory Equipment, Instruments, Gases, Consumables, Chemicals &						
	Reagents						
COMP	Computer Equipment, Computer Peripherals, Computer Consumables,						
	Software, IT Networks, Mobile and Landline Charges, Computer						
	Consultancy						
PRINT	Binding Services, Printing Services, Graphic Design Services, Publishing						
	Services						

Table 5 – Major emitting product code categories and their descriptions.

Following this quick evaluation, a more up-to-date and accurate input-output database was used for the emissions calculations, this being EXIOBASE3 (Bjelle et al., 2019). EXIOBASE3 is one of the most extensive EE-MRIO systems available worldwide. It builds upon the previous versions of EXIOBASE by using rectangular supply-use tables (SUT) in a 163 industry by 200 products classification as the main building blocks. It contains data for range of 12 years (2010-2022) and for 44 countries and 5 rest of world regions. This means that it's more accurate than the Scope 3 Evaluator in 3 dimensions:

- 1. Specific to the year, rather than using 2009 numbers and adjusting for inflation.
- 2. Specific to the region, rather than using worldwide average data.
- 3. Specific to the currency, rather than using US dollars and converting to euros.

The higher degree of granularity in the emission factors meant we could also go more granular with the procurement data. This was achieved by selecting the top product codes in terms of spend for each of the categories shown in Table 5, ensuring these add up to at least 70% of the spend for that year. This amounted to a total of 71 product codes which were each matched up with 23 different EXIOBASE categories. This is almost 5 times more granular than the quick assessment, not to mention being specific to the correct year, region and currency. Once these 71 product codes were matched with an EXIOBASE category, the spend was

multiplied by the emission factor to get the emissions, which then had to be adjusted to ensure 100% of the annual expenditure was accounted for. The way these 71 product codes have been matched with EXIOBASE categories can be seen in the Appendix. Table 6 shows the number of product codes taken from each category, the emissions from each category for each year, and the percent of the annual spend that the category accounts for. On the third last row we can see the percent of the annual spend that has been accounted for each year, an average of 72.6%, and how it's adjusted to account for the emissions of all expenditure.

PC Category	Purchased Goods and Services	2017	2018	2019	2020	2021
BUILD	Emissions from 22 Product Codes (kTCO2e)	1.5	2.0	2.7	2.4	2.6
BUILD	Amount of annual spend accounted for (%)	20%	19%	27%	24%	23%
SERVE	Emissions from 20 Product Codes (kTCO2e)	0.5	0.7	0.8	0.9	1.0
JERVE	Amount of annual spend accounted for (%)	13%	13%	17%	19%	22%
LAB	Emissions from 11 Product Codes (kTCO2e)	1.6	2.1	1.4	1.4	1.0
LAD	Amount of annual spend accounted for (%)	20%	21%	15%	14%	11%
COMP	Emissions from 13 Product Codes (kTCO2e)	0.8	1.8	0.9	1.1	1.1
COMP	Amount of annual spend accounted for (%)	15%	20%	12%	15%	13%
PRINT	Emissions from 5 Product Codes (kTCO2e)	0.1	0.1	0.1	0.1	0.1
PRINT	Amount of annual spend accounted for (%)	3%	3%	2%	2%	1%
Total calculate	Total calculated (Emissions of 71 PCs)				6.0	5.8
% of Spend ad	70%	75%	73%	75%	70%	
Adjusted rem	ainder to account for 100%	1.9	2.2	2.2	2.0	2.5
Total PG&S E	missions (ktCO2e)	6.45	8.9	8.1	8.1	8.3

Table 6 - Scope 3: Purchased	Goods and Services Emissions
------------------------------	------------------------------

To make the Scope 3 calculation more accurate and specific to the University, the main suppliers under each of these headings have been identified. A supplier specific emission factor for each product would give a more accurate Scope 3 analysis. As mentioned above, the Universities procurement system operates by product code at the most granular level. There are multiple suppliers available for each product code, meaning even if a supplier-specific product code is acquired, a buyer using the system could potentially order from a different supplier. This is an issue with the methodology currently, but by gathering more and more supplier-specific emission factors and referencing them to the global-average emission factors below, there is potential to create a robust procurement emissions reporting system. An investigation into supplier specific emission factors is being carried out with the goal of using this more accurate methodology in the next greenhouse gas report.

4.2.1 Construction of New Student Accommodation Block 2021

There was an outlier in the procurement data in 2021, this being an abnormally large amount of expenditure on construction due to the commissioning of a new block of student apartments. Even though these emissions fall under purchased goods and services, they've been separated in this report and in Figure 1 (the full carbon footprint graph) due to their size. Using the spend-based method and emission factors from EXIOBASE, the **total emissions** associated with the construction of this building are **22.62 ktCO2e**.

This outlier has also shown an opportunity for a case study into comparing the spend-based method of calculating emissions to a building Life Cycle Assessment (LCA). Life Cycle Assessment captures a much more accurate and specific picture of a product/service's impact as this requires going through every material item that will go into the building and finding an emission factor specific to that item. Obviously, we can see the benefit of the spend-based method here, as all we have to do is multiply the cost of the building by the emission factor for construction work in Ireland in 2021. However, by investigating the LCA of the building, we will gain an understanding of how accurate the spend-based method really is.

4.3 Scope 3: Category 3 Fuel and Energy Related

In the GHG Protocol Corporate standard, it is recommended to include this category in scope 3 to account for any emission associated with scopes 1 & 2 but have not been reported there. Usually, the main source of these emissions is from transmission & distribution losses on imported electricity. The amount of electricity purchased by an organization differs slightly from the amount of electricity produced by an electricity supplier, as there is a small percentage of the energy lost as it travels between the supplier and the organization. It is recommended to account for this loss in this category. However, in Ireland, the Sustainable Energy Authority or Ireland (SEAI) provide what they call the "Electricity supply efficiency". This differs from electricity generation efficiency as it includes:

- Losses from transmission and distribution of electricity on the network
- Consumption of electricity in power plants which are considered as losses

As it includes these losses, scope 3 emissions associated with transmission and distribution losses of purchased electricity are accounted for in scope 2.

Other fuel and energy related emissions that should be calculated are the well-to-tank emissions for all other fuels purchased and used on campus. This accounts for the mining, processing and transportation of fossil fuels in scope 1. This is not a step that has been pursued in this report but could be in the future.

4.4 Scope 3: Category 5 Waste

DBEIS emission factors were used for landfill, recycling, glass, WEEE and waste-to-energy combustion (DBEIS, 2021). These factors and waste data for 2017 – 2029 can be seen in the table below. Moving forward, an emission factor from the Dublin waste-to-energy centre would be ideal, as well as emission factors for recycling and composting in Ireland, as these are UK emission factors.

	Emissions (tCO2e)				
Waste	2017	2018	2019	2020	2021
Landfill	97.4	98.4	42.5	-	-
Waste to energy	-	-	2.7	2.4	1.5
Mixed Recyclables	-	-	-	0.0	-
Glass	4.7	4.3	4.1	2.0	0.8
Organic	0.3	0.3	0.4	0.7	0.6
WEEE	0.2	0.2	0.5	0.2	0.0
Total	102.6	103.2	50.2	5.3	2.9

Table 7 – Scope 3: Waste emissions

4.5 Scope 3: Category 6 Business Travel

The data for this category came from two sources, Club Travel and Procurement. The data received covered flights, car journeys, hotels, buses, trains, ferries and taxis. The most accurate data was for the club travel flights. This was sectioned into short, medium or long haul and into economy or business class. Emission factors from DBEIS (DBEIS, 2021) were acquired for the short, medium or long haul flight per passenger kilometre, a factor of 1.5 is multiplied by the business class flights and all flight emissions are multiplied by a radiative forcing factor (RFF) of 2. Other data from Club Travel included the amount spent on hotels, train journeys and car hire.

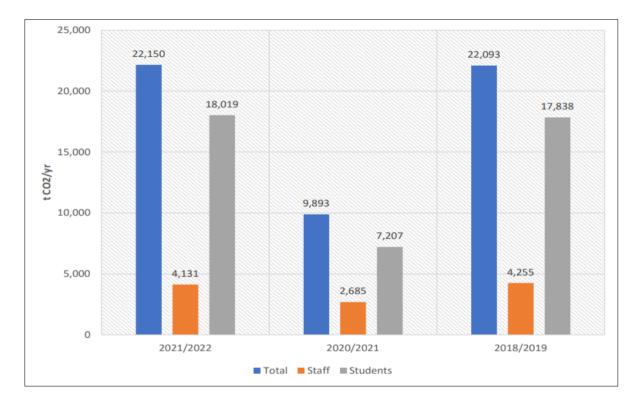
The emission factor for Irish rail is 24gCO2e/km as per CIE (CIE, 2021). The 2016 Irish rail report (National Transport Authority, 2016) states "During 2010, the average rail passenger km in Ireland created just 60g of greenhouse gases, vs. 210g for road vehicles". It also states "Iarnród Éireann carries 39.8 million passenger journeys annually, accounting for 18% of the 224 million passenger journeys made annually on Public Service Obligation (PSO) public transport throughout the State. This equates to €174.5m in passenger revenue. Currently c.16m passengers use the DART network and c.21m passengers use the Intercity and Commuter network annually, accounting for over 1500m passenger kilometres." So, €174.5m passenger revenue divided by 1500m passenger kilometres gives €0.1163/km. Taking the 24gCO2e/km for rail and divide by €0.1163/km = 0.2063 kgCO2e/€. From here, using the DBEIS emission factor for an average car for a ratio (168.43 gCO2e/km), the following emission factor is calculated for spend on car travel: 1.4478 kgCO2e/€. Hotel data contained info on the city stayed in and the number of nights spent. The DBEIS inventory contains factors for the emissions associated with a night's stay in a hotel from a list of 54 given countries. For any countries that an emission factor was not provided, an average was calculated (36.5 kgCO2e/night). The flight data from procurement was only given in euros spent, without the division by class or flight length. To account for this, the club travel data was used to calculate an average of the kilometres travelled per euro spent. From four years of data (2016-2020) this resulted in 18.1 km/€ for flights. This was multiplied by the amount spent on flights from procurement to get a total number of kilometres, as seen in the table below. This was then multiplied by an average of the short, medium, long haul emission factors (0.173 kgCO2e/km). Rail and bus were calculated using the rail factor calculated above (0.2063 kgCO2e/€). Taxis used the car factor from above (1.4478 kgCO2e/€) and DBEIS provide emission factors for an average car km (0.16843 kgCO2e/km).

	Emissions (tCO2e)				
Business Travel	2017	2018	2019	2020	2021
Short Haul - Economy	164.8	173.5	163.2	104.6	69.1
Short Haul - Business	0.2	-	0.1		
Medium Haul - Economy	922.8	858.3	1052.6	96.7	41.6

Table 8 - Scope 3: Business Travel Emissions from Club Travel

Total	3,908.2	3,571.0	3,872.8	695.2	274.0
Car hire	11.4	15.4	18.9	2.0	8.2
Rail	2.2	2.8	3.6	0.8	0.4
Hotel	50.3	49	59.7	36.6	18.2
Long Haul - Business	194.8	136.7	250.1		
Long Haul - Economy	2556.2	2326.5	2321.2	454.6	136.5
Medium Haul - Business	5.5	8.8	3.4		

Table 9 - Scope 3: Business Travel Emissions from Procurement


	Emissions (tCO2e)				
Business Travel	2017	2018	2019	2020	2021
Flights	580.5	540.6	274	9.0	1.4
Train/ferry	20	20.8	10.7	5.8	0.9
Taxis	127.9	130	71.3	35.0	5.7
Bus	14.9	17.2	8	3.5	0.9
Car	218.2	222.9	140.8	91.1	43.4
Total	961.5	931.5	504.8	144.4	52.2

4.6 Scope 3: Category 7 *Commuting*

A commuting survey was carried out as part of a student's master's thesis in 2022, to calculate the emissions associated with the commuting behaviour of students and staff. The survey had a high response rates of 10% or 2,138 responses, a higher proportion which came from staff (34% compared to 7.4% students). The Scope 3 carbon dioxide emissions were calculated for each participant in the survey. The sequence of the calculations was as follows:

- a) Calculate how far each participant commute is from their residence to the campus, from data collected.
- b) The distance each participant covers each week per mode of transport was calculated.
- c) If the participant commuted via car, then the vehicle specifications they provided were used to determine what emissions category it was.

- d) The distance covered by each mode of transport per week was multiplied by the average CO2 emissions in Table 10 to give the total emissions per week.
- e) Staff members weekly emissions was multiplied by 46.1 to give annual emissions, while students weekly emissions were multiplied by 32 for annual emissions.
- f) Finally, the results for staff members and students were extrapolated individually, to give a more accurate account of the entire University of Galway population.

Figure 4 - Commuting Emissions showing student/staff split for 2018, 2020 and 2021. Table 10 - Ecoinvent CO2 Emission Factors for Transport Modes

Transport Mode	Emission Factors (kg C02 eq/km)	Registration Period
Car RER generic	0.333	Any
Large diesel EUR03	0.415	2000-2005
Large diesel EUR04	0.3968	2006-2010
Large diesel EURO5	0.3896	2011+
Large petrol EUR03	0.4402	2000-2005
Lary petrol EUR04	0.424	2006-2010
Large petrol EURO5	0.4108	2011+
Medium diesel EURO3	0.3312	2000—2005
Medium diesel EUR04	0.3191	2006-2010
Medium diesel EURO5	0.3123	2011+

Medium Petrol EUR03	0.3707	2000-2005
Medium Petrol EUR04	0.3542	2006—2010
Medium Petrol EURO5	0.3414	2011+
Small diesel EUR03	0.2475	2000-2005
Small diesel EUR04	0.2418	2006-2010
Small diesel EURO5	0.2362	2011+
Small petrol EUR03	0.3012	2000-2005
Small petrol EUR04	0.2843	2006-2010
Small petrol EURO5	0.2719	2011+
Battery electric (fully electric — EV)	0.2239	Any
Plug-in hybrid electric (PHEV)	0.3123	Any
Hybrid electric	0.3191	Any
Bus GLO	0.109	
Train GLO	0.0737	
Tram GLO	0.0871	
Motor Scooter	0.124	
Cycling GLO	0.011	
Walk	0	

It should be noted that the engine abbreviations "Small," "Medium," and "Large" in Table 10 reflect engine sizes of less than 1.4 litres, 1.4 to 2 litres, and larger than 2 litres, respectively.

Table 11 - Scope 3: Commuting Emissions

	Emissions (tCO2e)				
Commuting	2017	2018	2019	2020	2021
Total Emissions (tCO2e)	20,920	22,093	17,800	9,893	22,150

4.7 Scope 3: Other Water

Water consumption data was acquired from the Building and Estates Office. The UK conversion factors document has emission factors for water supply and water treatment (DBEIS, 2021), both of which apply to University of Galway.

Table 12 - Scope 3: Water Emissions

	Emissions (tCO2e)				
Water Consumption	2017	2018	2019	2020	2021

Supply	11.6	11.8	10.8	8.7	6.7
Treatment	21.1	21.5	19.8	15.8	12.2
Total	32.7	33.3	30.6	24.5	18.8

5 Next Steps

This section will advise best practice moving forward for more accurate and efficient carbon reporting and give a brief overview of the next stage, the roadmap to net-zero emissions. It is important to note that emission factors should be updated annually at least.

5.1 Carbon Footprint Improvements

Categories 1 & 2 Purchased Goods & Services & Capital Goods

As explained above, an inventory of more accurate emission factors is being put together for purchased goods & services and capital goods. This emission factor inventory should remain up to date and will operate as a link between procurement and suppliers, keeping the conversation flowing about carbon reporting and reducing.

Category 5 Waste

The waste category does not include catering waste, as catering is supplied by contractors in the University. This waste should be included in future. It would also be preferable to acquire an Irish emission factor for the incineration of municipal solid waste.

Category 6 Business Travel

In future, it would be useful to require kilometres travelled for ferry, rail, bus, taxis, and flights in Agresso (procurement) as opposed to just reporting on the amount spent. Rail, bus, taxis and flights could also be further separated into vehicle type and fuel type. Incorporating the emission factors above into the procurement and club travel systems will give automated and accurate emissions. The more granular the data is the better.

5.2 Roadmap to Net-Zero

University of Galway's carbon footprint as of 2018 is around 47,000 tonnes of CO2 equivalent of greenhouse gas emissions to the atmosphere each year. According to GoCarbonNeutral.ie (GoCarbonNuetral, 2021) the cost of carbon offsetting is €25 per tonne of CO2 equivalent. So, if University of Galway were to fully offset the carbon from 2019, it would cost about €1.25M. To put the amount of GHG emissions associated with the activities of 2018 into context, in order to fit the entire 47,000 tonnes of carbon into the Alice Perry Engineering building without compressing the gas, it would need to be about 4.7km tall, or about 1,175 storeys high! Or, if the greenhouse gases could be compressed into a similar density to stones, 2,500 trucks would be needed annually to take away the GHG emissions from the University annually, one truck every 4 hours all year round! If the trucks parked bumper to bumper along the road from the University, by the end of the year the line of trucks would make it to Athenry, Inverin, Oughtarard or Headford (about 20km). The rough sketch here shows the carbon footprint in terms of area of Irish native woodland trees growing over 10 years that we would need to plant to offset emissions. This is the area needed every year! Obviously this is an unrealistic solution to the institutions carbon footprint, a more realistic one is called a Climate Action Plan or a Roadmap to Net-Zero Emissions. An example of this can be seen in Edinburgh University (Williamson et al., 2020). A Roadmap to Net-Zero involves developing a baseline of past, present and future emissions using science based reduction targets. As mentioned in the introduction, University of Galway commits to pursue and achieve no later than 2050, the transition to being a university with net-zero greenhouse gas emissions that is climate resilient, biodiversity-rich and environmentally-sustainable. There is also a commitment to move ambitiously towards carbon neutrality by 2030 in the Universities Sustainability Strategy. Using these targets combined with the past and present baseline carbon footprints presented in this report, a roadmap can now be constructed.

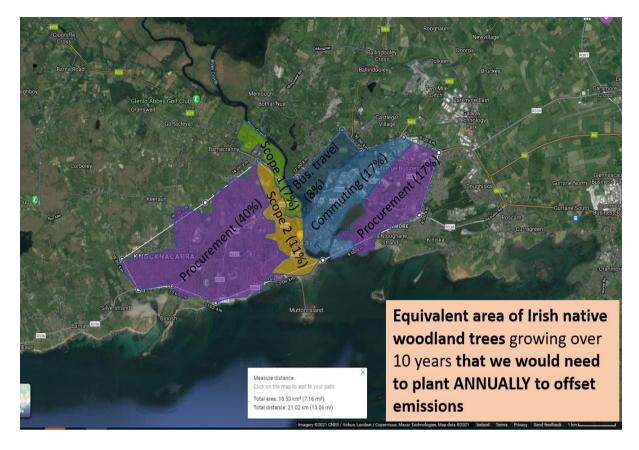


Figure 5 – University of Galway Carbon Footprint shown in terms of area of native woodland trees, i.e. an offsetting scenario

6 Conclusion

This report presents results and a methodology for creating a scope 1, 2 & 3 baseline carbon footprint for an Irish University. This baseline can now be used in the creation of a climate action plan and a pathway to net zero. One of the main findings here is that procurement is key to understanding and controlling a Universities carbon footprint. It is important to highlight this so that communication can begin between procurers and suppliers on carbon reporting and reducing. A just transition is one of the major goals of the Irish government, and for a University in Ireland, it appears effective communication between the institution and its suppliers about carbon reductions is pivotal.

References

Bjelle, E.L., Stadler, K., Wood, R., 2019. EXIOBASE 3rx. https://doi.org/10.5281/ZENODO.2654460

- CIE, 2021. Córas Iompair Éireann Climate Action. [WWW Document]. Accessed 16062021. URL https://www.cie.ie/Enviromental-Corporate-Responsibility/Climate-action (accessed 6.16.21).
- DBEIS, 2021. UK Government Greenhouse gas reporting: conversion factors 2020 [WWW Document]. Dep. Bus. Energy Ind. Strategy. URL https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversionfactors-2021 (accessed 6.15.21).
- GHG Protocol, 2020. Calculation Tools | Greenhouse Gas Protocol [WWW Document]. ghgprotocol.org. URL https://ghgprotocol.org/calculation-tools (accessed 12.15.20).
- GoCarbonNuetral, 2021. Our Methodology Go Carbon Neutral 2021, fighting climate change in Ireland [WWW Document]. URL https://www.gocarbonneutral.ie/about-us/our-methodology/ (accessed 7.30.21).
- Morrissey, A., McIvor, G., Fahy, S., 2020. DCU CF 2019 [WWW Document]. Sustain. DCU. URL https://www.dcu.ie/ocoo/sustainability-dcu (accessed 6.23.21).
- National Transport Authority, 2016. Rail Review 2016 REPORT. Irish Rail.
- Poland, M., 2020. UCC CF 2019 [WWW Document]. Green Campus UCC. URL https://greencampus.ucc.ie/energy-water-climate-change/climate-action/ (accessed 6.23.21).
- Quantis, 2019. Scope 3 Evaluator [WWW Document]. URL https://quantis-suite.com/Scope-3-Evaluator/ (accessed 12.15.20).
- Williamson, R.F., Sudmant, A., Gouldson, A., Brogan, J., 2020. A NET-ZERO CARBON ROADMAP FOR EDINBURGH. Edinb. Clim. Comm.-Based Clim. Action Netw.
- WRI, 2020a. Corporate Standard | Greenhouse Gas Protocol Initiative [WWW Document]. URL https://ghgprotocol.org/Corporate-Standard-Training (accessed 12.15.20).
- WRI, 2020b. GHGP Training Materials Google Drive [WWW Document]. URL https://drive.google.com/drive/folders/0B23gBb6ejh-4TFJWakNDeVZkSms (accessed 12.15.20).
- WRI & WBCSD, 2011. Corporate Value Chain (Scope 3) Standard | Greenhouse Gas Protocol, WRI & WBCSD.

Appendix

Table 13 - Scope 3: Purchased Goods & Services Product Codes linked to EXIOBASE Categories

Product Code	Product Code Description	EXIOBASE Category	Emission Factor kgCO2e/€ (IRE 2021)
BUILD101	New Building - Cap. Project	Construction Work	0.312
BUILD103	Refurbishment - Cap. Project General Building Repairs &	Construction Work	0.312
BUILD113	Maint.	Construction Work Products of forestry, logging, and	0.312
BUILD115	Ground maintenance - services	related services Collected and purified water,	0.222
BUILD116	Estates Waste + Refuse disposal	distribution services of water	0.231

		Floatrical machinery and apparatus	
BUILD119	Electrical Repairs	Electrical machinery and apparatus n.e.c.	0.213
BUILD119 BUILD120	Plumbing Materials		0.213
BUILD120 BUILD121	-	Rubber and plastic products Other services	0.241
	Plumbing Repairs		
BUILD124	Rental of Buildings	Real estate services	0.133
BUILD129	CAP (BUILD Fees - Architects)	Construction Work	0.312
BUILD134	CAP (Bld fees - other prof.fees) CAPITAL gen.blding	Other business services	0.083
BUILD137	materials/maint	Construction Work	0.312
		Electrical machinery and apparatus	0.040
BUILD143	CAPITAL Electrical repairs	n.e.c.	0.213
BUILD145	CAPITAL Plumbing repairs	Construction Work	0.312
BUILD167	Fire Maintenance & Repair Integrated Facilities	Other business services	0.083
BUILD172	Management	Computer and related services	0.160
BUILD173	Minor Works	Construction Work	0.312
	Ground Maintenance	Products of forestry, logging, and	
BUILD174	Works/Civil Works	related services	0.222
BUILD180	Cleaning Services Contract	Other services	0.204
		Chemicals and fertilizer minerals,	
		salt, and other mining and	
BUILD181	Cleaning Consumables	quarrying products n.e.c.	0.611
BUILD195	Security Services Contract Work Campus Parking and Transport	Other services	0.204
BUILD196	Services	Other land transportation services	0.157
COMP201	Windows Desktop Purchase	Office machinery and computers	0.346
COMP202	Windows Laptop Purchase	Office machinery and computers	0.346
COMP203	Apple PC/Laptop	Office machinery and computers Radio, television and	0.346
		communication equipment and	
COMP208	Computer Cabling/Accessories	apparatus	0.131
COMP209	Software Purchase - Recurrent Software Maintenance -	Computer and related services	0.160
COMP210	Recurrent	Computer and related services	0.160
	IT Equipment Capital Purchase	Electrical machinery and apparatus	
COMP212	>€10,000 Software Consultants - Capital	n.e.c.	0.213
COMP216	>€10,000	Computer and related services	0.160
COMP224	IT Hardware Maintenance	Computer and related services	0.160
COMP226	IT Network Maintenance	Computer and related services	0.160
COIVII 220	HEAnet - External Network	computer and related services	0.100
COMP229	Services	Computer and related services	0.160
223		Radio, television and	0.100
	AUDIOVISUAL - Equipment	communication equipment and	
AUDIO107	Purchase < €10,000	apparatus	0.131
		Radio, television and	0.202
	COMPUTER EQUIPMENT	communication equipment and	
COMP232	MISCELLANEOUS	apparatus	0.131
	LAB Experimental	Medical, precision and optical	
LAB2009	Kits/Apparatus	instruments, watches and clocks	0.163

		Research and development	
LAB2034	Diagnostic services	services	0.083
LAB2012	Capital Equipment > €10,000 Capital Equipment -	Machinery and equipment n.e.c.	0.270
LAB2015	Maintenance	Machinery and equipment n.e.c.	0.270
		Medical, precision and optical	
LAB2016	Laboratory, Small Appartus	instruments, watches and clocks	0.163
		Medical, precision and optical	
LAB2018	LAB - Test Equipment < €10,000	instruments, watches and clocks	0.163
		Medical, precision and optical	
LAB2019	Lab Instruments < €10,000 Laboratory Chemicals and	instruments, watches and clocks	0.163
LAB2020	Reagents	Chemicals nec	0.324
LAB2024	Plastic consumables	Rubber and plastic products	0.241
LAB2032	Consumables Other/General	Rubber and plastic products	0.241
		Research and development	
LAB2035	Engineering/Scientific Services	services	0.083
PRINT102	External or outsourced printing External Graphic Design and	Printed matter and recorded media	0.140
PRINT103	Artwork	Printed matter and recorded media	0.140
	Pre-printed Stationery		
PRINT104	(Letterhead, Business Cards)	Printed matter and recorded media	0.140
	Marketing Print (Brochures,		
PRINT105	Prospectus, etc)	Printed matter and recorded media Research and development	0.140
PRINT106	Publication Services	services	0.083
		Insurance and pension funding services, except compulsory social	
SERVE07	Insurance renewals	security services	0.083
SERVE101	Advertising - General	Other business services	0.083
SERVE103	Conferences & meetings	Education services	0.083
SERVE104	Data information services	Computer and related services	0.160
SERVE106	General Consultancy	Other business services	0.083
		Public administration and defence	
		services; compulsory social security	
SERVE107	Legal Services	services	0.086
SERVE109	Promotions and Publicitiy	Other business services	0.083
	Membership Subs to Professi	Membership organisation services	
SERVE111	Bodies	n.e.c.	0.219
		Membership organisation services	0.240
SERVE114	Services - Campus Companies	n.e.c.	0.219
SERVE116	Datant Agant Faas and Charges	Research and development services	0.083
	Patent Agent Fees and Charges		
SERVE112	Training Courses - External Other Educational	Education services	0.083
MISC103	Establishments	Education services	0.083
MISCIUS	Consultancy - Business Strategy		0.005
SERVE120	and Operations	Other business services	0.083
	Consultancy - Research Services	Research and development	2.000
SERVE123	& Surveys	services	0.083
	-		

		Insurance and pension funding services, except compulsory social	
SERVE131	Insurance Underwriting Services	security services	0.083
	Consultancy and Advisory	Research and development	
SERVE133	Services	services	0.083
	Communications/Media		
SERVE134	Services	Other services	0.204
SERVE140	HSE Personnel Billings Invigilation and Other Exam	Health and social work services	0.083
SERVE144	Expenses Education Recruitment	Education services	0.083
SERVE145	Consultants	Education services	0.083