

Sustainable Timber Construction:

Exploring Engineered Timber as a Climate Friendly Building Solution

WoodProps Programme

Date: Thursday 31st October 2019, 09:00-13:00

Venue: The National Botanic Gardens, Glasnevin, Dublin 9

WoodProps Programme

Overall Aims:

Characterisation of Irish structural timber

Timber Properties

Species

Grading in Ireland

Knowledge exchange

Members of European Committees for timber

Use of EWP in modern timber construction

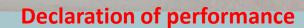
Dissemination of technical information

Irish Standard I.S. EN 14081-1:2016+A1:2019

Timber structures - Strength graded structural timber with rectangular cross section - Part 1: General requirements

© CEN 2019 No copying without NSAI permission except as permitted by copyright law.

Machine graded


Strength class

Dry-Graded

European Standard applied

Species/Species combination

0.07.14要原料下。6.接种

Image: Courtesy of Dan Ridley-Ellis

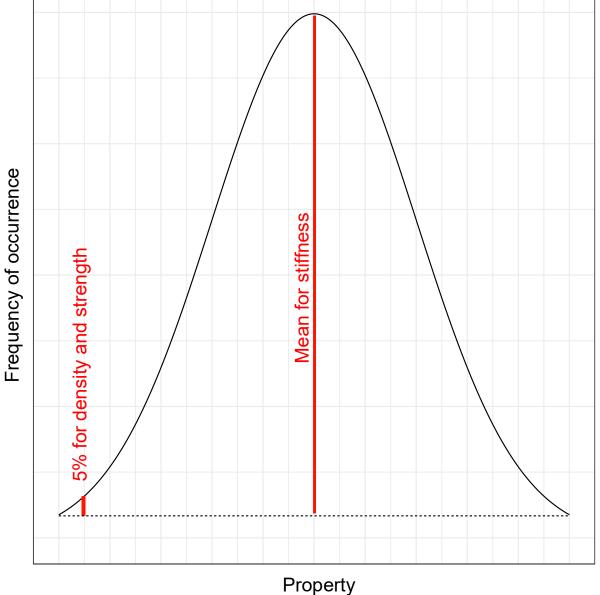
Sitka spruce C16, what's that?

- Sitka spruce (Picea sitchensis (Bong) Carr.) is a conifer (softwood) species that occupies 51.1% of the forest area in Ireland.
- More than half of the output from Irish sawmills in 2015 was used in the construction sector.
- C16 is the basic customary strength class used in Ireland (and the UK)

Is not it all the timber the same?

- Trees manufacture wood according to their needs, not to ours.
- Variations:
 - Between species
 - Between origins
 - Within growing regions
 - Within forests
 - Within stands

- Between trees in a stand
 - Within a tree:
 - Within a board
- With age
- With management



How do we deal with that variation?

- Timber classified in "strength classes"
- Described by characteristic material properties, "characteristic values"
 - Stiffness, Strength and Density
 - Measured in bending or tension
- For hardwoods and softwoods (and Poplar and sweet chestnut)
- The aim is to have similar properties within the batch. You can mix species!

Propei

	Class	C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50
Strength properties in N/mm ²													
Bending	f_{m_vk}	14	16	18	20	22	24	27	30	35	40	45	50
Tension parallel	ft,0,k	7,2	8,5	10	11,5	13	14,5	16,5	19	22,5	26	30	33,5
Tension perpendicular	f _{t,90,k}	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
Compression parallel	$f_{c,0,k}$	16	17	18	19	20	21	22	24	25	27	29	30
Compression perpendicular	fc,90,k	2,0	2,2	2,2	2,3	2,4	2,5	2,5	2,7	2,7	2,8	2,9	3,0
Shear	$f_{v,k}$	3,0	3,2	3,4	3,6	3,8	4,0	4,0	4,0	4,0	4,0	4,0	4,0
Stiffness properties in kN/mm ²													
Mean modulus of elasticity parallel bending	E _{m,0,mean}	7,0	8,0	9,0	9,5	10,0	11,0	11,5	12,0	13,0	14,0	15,0	16,0
5 percentile modulus of elasticity parallel bending	$E_{m,0,k}$	4,7	5,4	6,0	6,4	6,7	7,4	7,7	8,0	8,7	9,4	10,1	10,7
Mean modulus of elasticity perpendicular	E _{m,90,mean}	0,23	0,27	0,30	0,32	0,33	0,37	0,38	0,40	0,43	0,47	0,50	0,53
Mean shear modulus	G_{mean}	0,44	0,50	0,56	0,59	0,63	0,69	0,72	0,75	0,81	0,88	0,94	1,00
Density in kg/m^3													
5 percentile density	ρ_k	290	310	320	330	340	350	360	380	390	400	410	430
Mean density	$ ho_{mean}$	350	370	380	400	410	420	430	460	470	480	490	520

Strength classes for softwood based on edgewise bending tests (EN 338:2016)

Systems of grading, governed by EN 14081

- Visual, trained operators
 - The grading rule in Ireland is I.S. 127:2015
- Machine (assignments less conservative than visual)
 - Machine control
 - One or more Indicating property (IP) is measured, and related to the grade-determining properties (strength, stiffness and density) using an statistical model
 - IP thresholds determine if the graded batch match the required strength classes
 - The IP thresholds change with species and growing regions
 - To comply with the grade, characteristic values must be reached. Strength grading is not only about strength!
 - For a species and grade combination (e.g. C16/Reject) usually one property is limiting
 - Output control
 - Initial settings from destructive testing and periodical checks of the performance

Irish Standard I.S. EN 14081-1:2016+A1:2019

Timber structures - Strength graded structural timber with rectangular cross section - Part 1: General requirements

X-ray Scanner

Inline moisture metre

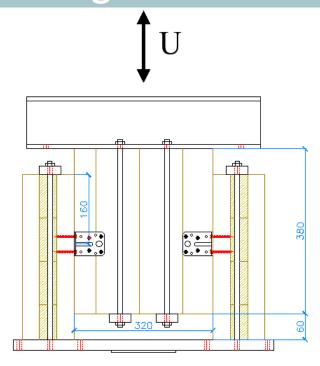
• Sitka spruce (and Norway spruce) and Douglas fir

British spruc	e	C14	C16	C18	C20	C22	C24	C27	C30
Strength	19.6 N/mm2	14	16	18	20	22	24	27	30
Stiffness	8.30 kN/mm2	7	8	9	9.5	10	11	11.5	12
Density	330 kg/m3	290	310	320	330	340	350	370	380
Potential	grading yield	100%	100%	92%	75 %	58%	30%		
Douglas fir		C14	C16	C18	C20	C22	C24	C27	C30
Strength	16.5 N/mm2	14	16	18	20	22	24	27	30
Stiffness	10.9 kN/mm2	7	8	9	9.5	10	11	11.5	12
Density	388 kg/m3	290	310	320	330	340	350	370	380
Potential grading yield 100% 100% 99% 95% 91% 87%									

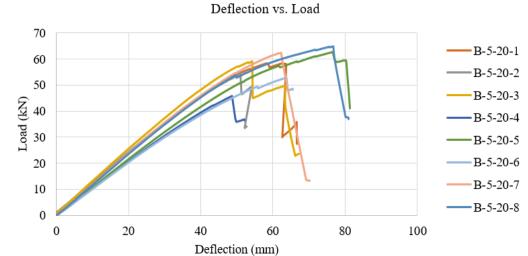
- Pieces are individually assigned to strength classes but it is the population of timber that matters
- Timber can be graded to different strength classes
- Irish C16 is as good as Scandinavian C16
- Irish timber can be graded to C16, and higher
- Machine strength grading isn't always about strength

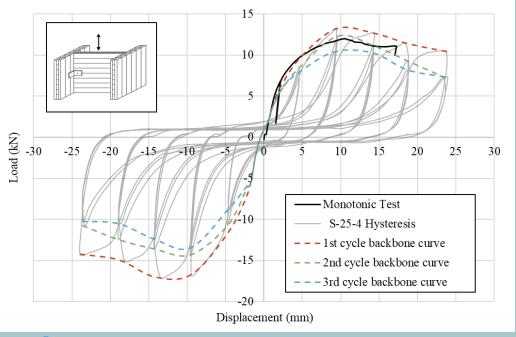
Engineered Wood Products

- Multi-layer engineered wood product
 - Glulam
 - Cross Laminated Timber (CLT)
- Increased rigidity/homogeneity
- Simple connections
- Increased speed of construction



Engineered Wood Products





- Mass timber buildings have been constructed around the world!
 - Sustainable and environmentally conscious materials
 - Advances in production of EWP and connection systems
- Future Eurocode 5 updates will include section on CLT
- CLT utilising C16 timber are available to use in Europe via ETAs

- Brock Commons
 - Vancouver, Canada
 - 18 Storey
 - 53m tall
 - CLT wall and floors
 - Glulam columns
 - Structure-70 days

- Mjøstårnet
 - Brumunddal, Norway
 - 18 Storey
 - 85.4m tall
 - CLT floors/lift shaft
 - Glulam columns
 - Current tallest!

- Puukuokka Block
 - Finland
 - 8 Storey
 - Prefabricated Modules
 - CLT wall and floors
 - 6 months/block

Interested in learning more?

WoodProps is focused on industry engagement and knowledge sharing related to timber quality, innovation in wood products and updates on standards development.

Timber Information Resource Centre

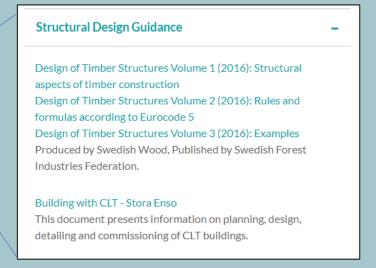
Timber Information Resource Centre www.nuigalway.ie/terg/knowledge

The following topics are currently available with more under construction:

- Design Guidance
- **Case Studies**
- **Design Tools**
- Forestry

- Fire
- **Connections**
- **Engineered Wood Products**
- Cross Laminated Timber (CLT)

- Health and Wellbeing
- Climate Change
- Video Library
- **Building Regulations**



Timber Information Resource Centre

Simply search under your topic of interest!

Design Guidance	
This section contains informative material and guid and detailing of timber structures	dance in the design
Informative Articles	+
Structural Design Guidance	+
Fire Design Guidance	+
No.	

Thank you for listening

Website: www.nuigalway.ie/terg

• TIRC: <u>www.nuigalway.ie/terg/knowledge</u>

 Join our Mailing List to keep up to date with the WoodProps!

• Twitter: @TERG_NUIG

<u>WoodProps team</u>:

David Gil-Moreno: david.gil-moreno@nuigalway.ie

Conan O'Ceallaigh: conan.oceallaigh@nuigalway.ie

Annette Harte: annette.harte@nuigalway.ie

Dan Ridley-Ellis: <u>d.ridley-ellis@napier.ac.uk</u>

