Massive timber - the emergence of a modern construction material

Annette.M.Harte^{1,2}

¹College of Engineering and Informatics, National University of Ireland, Galway, University Road, Galway
²Ryan Institute for Marine, Environmental and Energy Research, National University of Ireland, Galway
email: annette.harte@nuigalway.ie

ABSTRACT: In the move towards sustainable construction, timber and wood-based products are becoming increasingly important structural materials. The introduction of massive timber products with excellent load carrying characteristics allows timber to be used in larger, more complicated structures. Cross-laminated timber panel products have developed to the stage where they can be considered as economic and more sustainable alternatives to traditional materials. In this paper, the characteristics and design of CLT structures are described. Recent developments in mid- and high-rise CLT construction are reviewed and future opportunities identified. The potential to develop CLT from Irish timber is discussed.

KEY WORDS: Massive timber; Cross laminated timber; Tall timber buildings

1 INTRODUCTION

Massive timber is a term used to describe a family of engineered wood products of large section size that offers the construction industry an alternative to steel and concrete. The term is generally applied to thick panel products but can also include large section glued- or block-laminated linear elements. There has been a significant level of interest in these products and building systems due to their technical capabilities, cost-competitiveness and environmental properties.

The product that has received most attention in recent years is cross-laminated timber (CLT), sometimes referred to as X-lam [1]. CLT is a prefabricated multi-layer engineered panel wood product, manufactured from at least three layers of parallel boards by gluing their surfaces together with an adhesive under pressure (Figure 1). Alternate layers of boards are placed cross-wise to each other, which gives the product a high level of in-plane stability. The large thickness gives CLT panels their exceptional strength and stiffness.

Figure 1. Five layer CLT panel [2].

Since its introduction in the 1990s, CLT has been the subject intensive research, which has enabled the development of product standards and design guidelines. According to the UNECE/FAO Forest Products Annual Market Review 2014-2015 [3], about 90% of CLT production worldwide is located in Europe, with a total production volume of 560,000 m³ in 2014, forecast to increase to about 630,000 m³ by the end of 2015. Plants have recently opened or are planned in Canada, the US, Japan, China and New Zealand [4].

Many buildings have been constructed using this technology across a range of building types mostly as low-rise construction. In the UK alone, over 100 educational buildings in CLT were constructed between 2003 and 2011 [5]. The use of CLT in mid-rise and high-rise buildings has received international media attention. To date, over 40 buildings between 5 and 14 stories tall have been completed and an 18-storey student residence is currently under construction in Canada [6] and taller buildings are planned.

In this paper, CLT as a construction material and system is examined, design approaches and some case study buildings are presented. In addition, the future for tall timber buildings, and current and future research needs are discussed.

2 CHARACTERISTICS AND DESIGN OF CLT STRUCTURES

2.1 Panel Manufacture

CLT panels are commonly manufactured to lengths, widths and thicknesses of up to 18 m, 5 m and 0.5 m, respectively. The number of layers forming a CLT panel is usually 3, 5 or 7. The European product standard for CLT, EN 16351 [7], permits layer thicknesses between 6 mm and 45mm; however, the standard layer thicknesses are 20, 30 and 40 mm. The recommended minimum board width is 4 times the thickness in order reduce rolling shear failures. For the manufacture of the panels, structural grade timber is dried to about 12% and planed to the required thickness. Defects are cut out and boards are finger-jointed to produce the required lengths. Boards are laid side by side and may or may not be adhesively bonded along their narrow edges. Successive layers are added and the stack is face-bonded under pressure. Depending on the finish required further surface treatment may be required. Openings for doors, windows and services are made using CNC machinery to tight dimensional tolerances. The panels are stored in batches in accordance with the construction sequence and transported to site for erection as required. This sequence is illustrated in Figure 2.

Figure 2. Manufacture, transportation and erection of CLT panels [Images: KLH].

2.2 Characteristics of CLT

CLT provides opportunities to use timber products in a wider range of applications than was possible heretofore. Increased use of timber in building construction can positively contribute to sustainable building practices.

Timber is considered a natural, renewable resource, and extraction and manufacturing of timber products requires a very low amount of energy relative to more conventional structural materials used in construction. Prefabricated CLT building systems are easily erected in a low-dust, low-noise assembly with minimal site waste. Due to their low weight, there is reduced labour and craneage on site and rapid erection times. Ease of disassembly allows for reuse of the material and a more resource-efficient product life cycle. An important consideration is the fact that the timber buildings sequester carbon over their lifespan. Dry wood is about 50% carbon by weight and so massive timber buildings store considerable amounts of carbon. During the lifespan of the building, several forest rotations can take place with further carbon sequestration in the forest. Several studies have been carried out to quantify the environmental benefit of construction in timber using life cycle analysis procedures [8-9]. From an energy efficiency perspective, the use of CLT panels as part of the external building envelope makes it easier to achieve passive or net zero energy building standards as timber has a low coefficient of thermal conductivity and good air-tightness is achieved.

In addition to the sustainability benefits, one of the primary benefits of CLT panels is the use of offsite prefabrication allowing for high-quality certified production, independent of the weather. As holes and notches in panels can be pre-cut prior to arrival to site and assembling methods are straightforward, construction and project delivery times are improved and costs are reduced.

Cross-lamination gives CLT excellent in-plane and out-ofplane strength, rigidity, and stability characteristics [1]. The degree of anisotropy in properties and the influence of natural variations, such as knots, are reduced in comparison with construction timber, allowing for higher characteristic properties to be used in design. Due to the fact that timber is a low density material, overall building weight is reduced compared to other construction material, resulting in savings in foundation works when compared to other construction materials. However, for tall CLT buildings the light weight may be a disadvantage when considering overturning effects due for example to wind loads, and additional measures such as tie-down rods may be required.

The use of CLT panels gives increased flexibility in architectural design as openings can be regular or irregular and placed at random. Where the panels are left exposed, building aesthetics are greatly enhanced as the exposed timber provides a warm sensation. Exposed timber in schools and healthcare buildings has been shown to have psychological benefits with heart rates and stress levels reduced, which resulted in higher levels of concentration in schoolchildren and faster recovery rates for patients [10-12].

2.3 CLT elements and building systems

CLT panels can be used as floors, walls and roofs and can be used in combination with other engineered wood products, concrete, steel and masonry. CLT panels can be vertically oriented as load-bearing walls and shear walls, or horizontally as load-bearing floors or roofs. CLT panels have been widely used in low-rise construction but are increasingly used for mid- and high-rise residential construction. Walls typically consist of three- to five-layer panels, whereas floors consist of five or more layers. For longer spans and unduly heavy loads timber-concrete composite floors provide an economic solution.

Table 1. Maximum economic span for different floor types

Floor construction	Max. span (m)
Timber studs	4
CLT – simply supported	5
CLT – continuous over supports	6
Ribbed timber slab – CLT + glulam	10
Timber-concrete composite	10

For low-rise buildings, platform construction is widely used. On each level, CLT walls are erected in a cellular arrangement and the floor is placed on top as seen in Figure 3. The floor then provides a platform for the next level. With increasing building height, the compressive force from the walls above acting on the floor below in the perpendicular to grain direction increases. To prevent excessive deflections, the force can be transferred to the wall or column below by means of self-tapping screws or other steel connectors. An alternative approach is to use balloon construction methods in which the walls are continuous from floor to floor and the floors are supported by steel brackets connected to the walls. In this way, the compressive loading perpendicular to grain issue is avoided but scaffolding may be required to support the floor.

For mid- and high-rise buildings, different arrangements of CLT elements in conjunction with glulam beams and columns have been used with the structural core constructed either from concrete or CLT. Some of these solutions are described in Section 3.

2.4 Structural design of CLT

Due to the lack of experience with CLT when Eurocode 5 [14] was developed, no specific design rules for CLT were included. In the intervening years, design rules have been

developed and are included as part of product-specific technical approvals and also in the National Annexes to Eurocode 5 in Austria and Germany. In Canada and the United States, CLT Handbooks [15-16] containing detailed design rules have been published. The CEN standardisation committee, CEN/TC 250/SC5, has established a working group to draft new design rules for inclusion in the next revisions to Eurocode 5. Recommendations for the design of CLT elements have been well documented in publications emanating from the European COST Actions [17-18].

Figure 3. Platform construction – Murray Grove [13].

For elements loaded out of plane, such as floors and roofs, the serviceability limit state deflections and vibrations limits generally govern the design. An important consideration that arises from the cross-lamination of members is the shear flexibility of the cross layers. Because of this, deflection calculations based of one of the following methods is used: the Gamma method, the shear analogy method and the Timoshenko shear flexible beam method. These methods generally give comparable results where the span-thickness ratio exceeds 15. For the calculation of the stresses, for simplicity only those layers oriented perpendicular to the axis of bending are assumed to contribute to load resistance. This is illustrated in Figure 4 for the case of bending stresses.

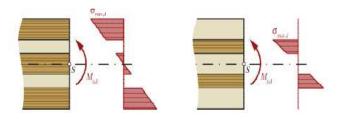


Figure 4. Bending stress distribution in CLT [17]

For elements loaded in-plane, the two main loading scenarios are compression and shear. For CLT walls carrying vertical loading, compressive stress and buckling checks are performed. For buckling, verification by either the equivalent beam method or using 2nd order theory is used. For CLT shear walls, a number of different failure mechanisms are possible depending on whether the narrow edges of the layers are bonded or unbonded [19]. For CLT panels with the narrow edge bonded, failure is in gross-shear, where shearing of all of the layers takes place. Where there is no edge bonding, failure can occur through net-shear failure by exceeding the shear resistance of the layers oriented in the weak direction or by

torsion failure of the glueline between the layers. Further information on these and other design checks is detailed in [18].

2.5 Connections systems

Connections between the CLT elements is achieved via simple steel connectors and self-tapping screws. In Figure 5, some typical arrangements for panel-to-panel connections are illustrated. Arrangements for wall-floor connections are shown in Figures 6, 7 and 8. The design of these connections can be carried out in accordance with current Eurocode 5 procedures.



Figure 5. CLT panel-to-panel edge connections [20]

Figure 6. Self-tapping screws as connectors

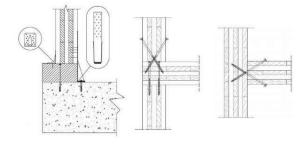


Figure 7. CLT wall-to-floor connections [20].

Figure 8. CLT wall floor connection – Murray Grove [13].

2.6 Fire Performance of CLT

Over the past couple of decades, research and testing has been performed to characterise the fire performance of timber structures so that safe fire design can be conducted [21-25]. It is well known that timber when ignited burns at a predictable rate with the formation of a charring layer. This charring layer forms a thermal barrier between the surface and the internal timber. During a fire incident, the cross-section of the timber element reduces at a predictable rate. Due to the large section size of massive timber members, they have an inherent fire resistance. Many studies have been undertaken to establish the charring rates for massive timber elements. In Figure 9, a CLT panel after a 1-hour fire test is shown. The exposed face of the panel shows the char formation while the unexposed face has shown no evidence of deterioration. In tests on CLT panels manufactured with temperature-sensitive adhesives [23], the charred layer delaminated during the tests resulting in increased charring rates, which can be characterised using a bi-linear charring model. For panel manufactured with less temperature-sensitive adhesives, the charred layers remained in place and continued to protect the layers underneath against increasing temperatures. This behaviour is the same as for solid panels and provides a constant charring rate throughout. In order to achieve a specific level of fire resistance, different measures are used. The CLT panel can be sized to ensure that the required resistance is met. The reduced section after the end of the fire duration must still have adequate capacity to carry the loads. Another approach is to encapsulate the panels with fire-rated gypsum boards. The combined resistance of the panels and gypsum boards provide the necessary fire rating. The next level of fire protection is to provide a sprinkler system.

Tests on several full-scale buildings have been conducted to investigate the influence of combustible surfaces on fire growth and fire spread inside and outside the room [22, 24]. As part of the SOFIE project [24], tests were carried out in Japan on a full-scale 3-storey CLT building under natural fire conditions to check the global performance and to find possible weaknesses of the timber structure. The walls and floors of the building comprised 85 mm thick and 142 mm thick CLT panels, respectively. They were encapsulated in either one or two layers of non-combustible gypsum board. The windows in the fire room were left open during the test. After the 1-hour fire test, all of the gypsum boards had completely fallen off and the measured charring depth varied between 5 mm and 10 mm. The tests confirmed that with pure structural measures it is possible to limit the fire spread to one room even for timber structures. There was no fire spread to adjacent rooms and in the room above the fire room, no elevated temperature or smoke were detected. Figure 10 shows the building under test 40 minutes after fire ignition.

As new timber technologies are developed and, in particular, connections that transfer loads between elements, it is important to consider the fire performance of these assemblies. As most connectors or manufactured from steel, it is essential as part of the fire design to account for the potential of the connectors to conduct heat into the core of the panels. In addition to connection behaviour in fire,

understanding penetration behaviour is critical to demonstrate that compartmentation is achieved.

In the current regulatory environment, testing is generally required to prove compliance for mid- and high-rise buildings. For recently constructed tall CLT buildings, the fire design has often been conservative. Sprinkler systems have been included even when compliance was deemed to have been achieved with encapsulation on the basis of the tests. Testing is also an important part of the ongoing fire engineering research that will underpin the development of standards.

Figure 9. CLT panel after fire test (a) unexposed face (b) exposed face.

Figure 10. Fire test on 3-storey CLT building [24]

3 CLT BUILDINGS

In the last 20 years, many CLT buildings have been completed, mainly in Europe. The earlier projects were mainly single family dwellings but this quickly expanded to the multi-family residential, educational and commercial sectors. Due to the expertise developed with earlier projects and a significant level of research, the last 10 years have seen a significant move to using this technology in the mid- to high-rise construction sector. In Table 2, a list of all buildings of 5-storey and above completed since 2005 is given [6]. It

can be seen that over that period the number of projects and the height of the buildings has increased. The 14-storey TREET building in Norway is currently the tallest CLT building in the world but this record will be broken in 2017 when the 18-storey Brock Commons student residence is completed in Canada. A number of proposals for even taller buildings have been put forward and studies have shown that very tall buildings utilising CLT are feasible.

Table 2. Multi-storey CLT buildings completed 2005-2016.

Year	Building	Location	Use-No
1 Cui	Bunding	Location	storeys
2005	Svartamoen	Trondheim, NO	R - 5
	Fairmule House	Hoxton, UK	R - 5
2006	MFH Holzenhausen	Steinhausen, CH	R - 6
2008	E3	Berlin, DE	R - 7
	Lagerhuset	Eslov, SE	R - 10
	Limnologen	Vaxjo, SE	R - 8
2009	Murray Grove	London, UK	R - 8
2010	Edifice Fondaction	Quebec, Ca	0 - 6
2011	3xGrun	Berlin, DE	R - 6
	Bridport House	London, UK	R - 8
	H8	Bad Aibling, DE	R - 8
2012	PuuEra	Heinola, FI	R - 5
	Forte	Melbourne, AU	R - 10
	UBC Earth Sciences	Vancouver, CA	E - 5
	Lifecycle Tower	Dornbirn, AU	0 - 8
	Whitmore Rd	London, UK	R - 6
2013	Wood Cube	Hamburg, DE	R - 5
	Tamedia	Zurich, CH	0 - 6
	Via Cennia	Milan, IT	R - 9
	Maison de L'Inde	Paris, FR	R - 7
	Marina Verde	Caorle, IT	H - 6
	Bullitt Centre	Seattle, US	0 - 6
	Wagramerstrasse	Vienna, AT	R - 7
	Panorama Giustinelli	Trieste, IT	R - 7
	District 03	Quebec, CA	R - 6
2014	Pentagon 2	Oslo, NO	R - 8
2014	UEA Student Res	Norwich, UK	R - 7
	Contralaminada	Lleida, ES	R - 8
	St Die-des-Vosges	Vosges, FR	R - 8 O - 5
	Illwerke Zentrum Rundeskogen	Vandans, AT Sandnes, NO	R - 8
	Banyan Wharf	London, UK	R - 10
	Shaing-Yang Woodtek	Taiwan	M - 10
	Kingsgate House	London, UK	N1 - 3 R - 7
	WIDC	Pr George, CA	E - 6
2015	Puukuokka	Jyväskylä, FI	R - 8
2013	Framework	Portland, US	O - 5
	Trafalgar Place	London, UK	R - 10
	Trajuigar Fiace Trentino-Quebec	Trento, IT	R - 10
	Cobalt Place	London, UK	R - 6
	Verde Living	Adelaide, AU	R - 5
	Curtain Place	London, UK	M - 6
	Treet	Bergen, NO	R - 14
2016	Nordic Lofts	London, UK	R - 5

R- residential, O – office, H – hotel, E- education, M – mixed use

Many of the early adopters of CLT as a primary construction material were in regions or municipalities where 'Timber First' or sustainable policies were in place. The London borough of Hackney is the first local authority in England to promote timber construction. Since it introduced a 'Timber First' policy in 2012, more than 18 multi-storey timber buildings have been built in the region. One of these buildings, the Stadthaus in Murray Grove, was the tallest timber building in the world when it was completed in in 2009 and has received considerable international attention since that time. Vancouver aims to be the greenest city in the world by 2020 and is the site for what will be the highest CLT building when it is completed in 2017.

Three case study buildings are presented and future trends in high-rise construction are discussed.

3.1 Case Study Building 1: Limnologen apartment complex in Växjö, Sweden.

In the Välle Broar region in the municipality of Växjö in Sweden, a town planning strategy was developed in 2002 to increase the use of wood in construction. As part of this strategy, it stated that in the Välle Broar region, all construction must be based on the use of timber or wood based products.

As a result of an architecture competition, the Limnologen complex was born. It consists of four eight-storey apartment buildings, with seven timber storeys on a concrete foundation and concrete first floor (Figure 11).

Figure 11. Limnologen apartment buildings, Sweden.

The loadbearing structure is CLT, which is used in both the floors and walls. All exterior walls and some of the interior walls carry the vertical loads. The horizontal loads are transferred by the floors - acting as stiff plates – to the top of the walls. In some parts of the buildings, glulam columns and beams have supplemented the load bearing system in order to reduce the deformations. Typical internal and external wall and floor elements are shown in Figures 12 and 13. The loadbearing floor elements comprise 3-layer CLT panels acting compositely with tee-shaped glulam beams. Tension rods, anchored to the concrete at first floor level are required to carry the overturning forces due to wind loading. The tension rods were re-tightened after some time due to relaxation in the steel, creep deformations in the wood and due to possible drying of the wood.

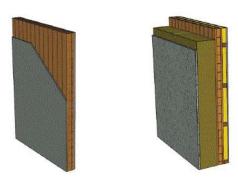


Figure 12. Typical internal (left) and external wall (right) details [26].

Figure 13. Typical floor-ceiling detail [26].

In order to minimise the risk of flanking transmission and impact sound transmission, the walls are not continuous across storeys, and a polyurethane sealant is used between the walls and the flange of the floor elements. Separation of the floor elements from the ceilings directly below forms part of the acoustic design as can be seen in Figure 13.

As these buildings were unique in Sweden, they were designated as research and educational buildings. Linneaus University and the SP Technical Research Institute have access to Broar Välle projects and both continue to monitor the buildings. Monitoring of vertical shortening, sway, sound transmission, and structural vibrations are ongoing.

3.2 Case study building 2: Mayfield School, Kent UK [27]

This project involved the expansion of an existing 1,000 pupil secondary school to accommodate an additional 800 pupils and 80 teachers, requiring an 8,000 m² expansion. The development had an 18-month timeframe in what was an active school site and had to achieve a BREEAM "excellent" target environmental performance rating.

Because of these constraints, the structural solution chosen was CLT together with glulam beams and columns. Steel beams were used in a small number cases for particularly long spans. The use of off-site manufacturing reduced the time on site and the superstructure was completed in 12 weeks. Figure 14 shows the buildings under construction. The lightweight timber significantly reduced the substructure works. Another key factor in achieving a shortened construction time was the use of an integrated building information modelling approach. Figure 15 shows the BIM model for the school developed by Ramboll UK, structural engineers on the project. Where possible, the timber was left exposed, due to its aesthetic appeal, to provide a warm interior, and to take advantage of beneficial effect on learning provided by timber interiors.

Figure 14. Mayfield school – construction phase [28].

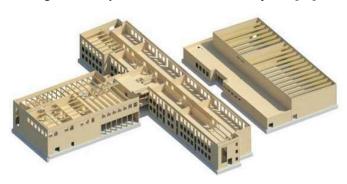


Figure 15. Ramboll BIM model of Mayfield school [28].

3.3 Case study building 3: UBC student residence [29]

The Brock Commons residence at the University of British Columbia (UBC) in Vancouver is currently under construction with an estimated completion date of August 2017. This 18-storey building will provide accommodation for over 400 students. The superstructure of the building comprises a reinforced concrete ground floor and two reinforced concrete cores while the remaining 17 floors will comprise CLT panels and glulam columns (Figures 16 - 17). On completion, it will be 53 m tall, with a floor area in excess of 14,500 m², and will be the tallest timber structure in the world. UBC aims to achieve LEED Gold certification for the building. In addition to its primary function as a student residence, the building will serve as a living laboratory for students and researchers, who will be able to study and monitor its operations.

The floor structure comprises 5-layer two-way spanning CLT panels supported on glulam columns on a 2.85 m x 4.0 m grid. The vertical loads are carried by the CLT floor structure and lateral stability is provided by the concrete cores and CLT diaphragms at each level. To prevent vertical load transfer through the CLT panels, steel connectors are used to transfer the columns loads directly to the column below, as seen in Figure 18.

The construction cost for this innovative building is estimated to be about 8% higher than comparable reinforced concrete building. This cost difference is expected to reduce as more CLT suppliers enter the marketplace and designers and builders become more familiar with massive timber

construction methods. Due to the uniqueness of this project, a conservative approach to the fire safety design was taken. The timber elements will encapsulated in gypsum panels to give a 2-hour fire separation between compartments and an automatic sprinkler system with a back-up water supply will be installed.

Figure 16. Schematic of UBC student residence [29].

Figure 17. UBC student residence under construction

Figure 18. Floor column connector [29].

3.4 Tall timber buildings – the future

As can be seen from Table 2, timber buildings made from massive timber have been getting progressively taller. The tallest completed building is the 14-storey Treet building in Norway which is 49 m tall. In 2017, when completed the 18-storey Brock Commons student residence in Canada will be

53 m tall. The drive to develop tall buildings arises due to the demands for housing to cater for increasing global population and increased urbanisation. Tall buildings present unique challenges for structural designers. In order to investigate the technical and economic feasibility of using massive timber in tall buildings, to quantify the environmental benefit and to identify research needs, a number of international studies have been undertaken, including the *Case for Tall Wood Buildings* project, and the *Timber Tower Research* project. In these projects, different structural solutions for tall buildings are proposed, which use timber as the primary structural material but also incorporate steel and concrete elements.

In 2012, Vancouver-based Michael Green Architecture unveiled a conceptual design for 30-storey timber residential buildings in a report entitled *The Case for Tall Wood Buildings* [30]. The structural system, known as the FFTT system, is based on a 'strong column-weak beam' balloon frame approach. The system combines massive timber panels as the vertical structure, lateral shear walls and floors. The 'weak beam' component refers to steel beams, which are bolted to the timber panels, to provide ductility in the system under wind and seismic loading. Concrete is used for the foundations.

The FFTT system is applied to four case study buildings: Option 1 - 12-storey building with core only, Option 2 - 20storey building with core and interior shear walls, Option 3 – 20-storey building with core and perimeter moment frames and Option 4 - 30-storey building with core and perimeter moment frames and interior walls. These options are illustrated in Figures 19 and 20. The gravity load-resisting system comprises CLT or CLT/concrete composite panels, designed to span one way over interior steel beams, which also act as link beams. The perimeter structure consists of glulam post and beam for Options 1 and 2, and moment frames of solid wood panels and steel link beams for Options 3 and 4. The lateral load resistance is provided by three lateral load resisting systems: the core, the perimeter moment frames, which would be integrated into the building facades, and interior partition walls used individually or in combination. Stiffness governs in most cases, and wind loading will govern for higher buildings even in higher seismic zones, as the building mass is relatively low.

A cost analysis was conducted for both 12-storey and 20-storey FFTT options, considering both the charring and the encapsulation approach to fire protection, and costs were compared to equivalent reinforced concrete frame structures. For both building heights, the costs for the FFTT structures with the charring option were the same as the concrete structures. Costs for the FFTT cases using the encapsulated approach were 2% higher. There is an expectation that as the design and development of FFTT building advances, there will be significant reduction in the construction costs.

Further research and development is required to validate the FFTT system including: advanced analysis of the lateral load resisting systems and connection options; testing of frame behaviour and typical connections; fire testing and modelling.

Figure 19. FFTT building frames: Options 1(12-storey) & 2 (20-storey) [30].

Figure 20. FFTT building frames: Options 3 (20-storey) & 4 (30-storey) [30].

The *Timber Tower Research* project [31] was undertaken by Skidmore, Owning and Merrill (SOM), designers of many tall buildings including the tallest building in the world, the Burj Khalifa in Dubai. The aim of the study was to develop a structural system for tall buildings using timber as the main structural elements and which minimises the carbon footprint of the building. The feasibility of a new structural mass timber system that can be designed to be competitive with reinforced concrete construction in buildings from 10 to 30 stories in height, while reducing the embodied carbon footprint by approximately 60% to 75%, was demonstrated. The design solution proposed includes a novel concrete-jointed timber frame. Massive timber is used for the primary members floors, shear walls and columns and these are connected with steel reinforcing through concrete joints. The floor system and a typical concrete joint are illustrated in Figures 21 and 22.

The proposed structural system was applied to a prototype building based on an existing concrete building designed by SOM. The Dewitt-Chestnut apartment building, built in Chicago in 1966, is a 395' tall 42-storey concrete structure. This building was selected as the data was readily available and made very efficient use of materials, giving a lower-

bound for comparison. The timber design, utilising the concrete jointed timber frame is illustrated in Figure 23. The gravity load-resisting system comprises CLT floor panels that span between the timber shear walls at the centre of the building and the reinforced concrete spandrel beams and timber columns at the perimeter, as illustrated in Figure 22. The concrete beams stiffen the floor thereby enhancing the deflection and vibration characteristics, leading to a more efficient design. The beams transmit the floor loads via the columns and walls to the lower floor and eventually to the foundations. The lateral load-resisting system comprises CLT shear walls located near the core, designed to resist the wind loading in both directions and overall building torsion. Additional shear walls across the narrow building dimension are necessary to resist uplift due to wind loading on the wide faces of the building. The foundations and the lower two floor of the building are concrete. Overall, the building is 70% timber and 30% concrete.

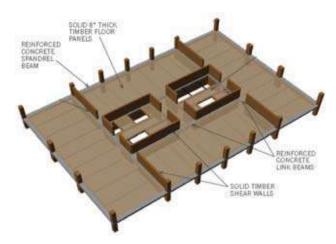


Figure 21. SOM concrete-jointed timber frame [31].

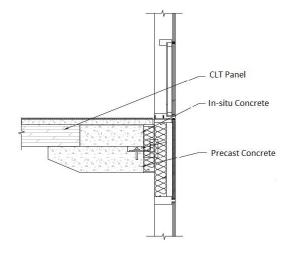


Figure 22. SOM concrete-joint detail [31].



Figure 23. SOM 42-storey timber prototype [31].

A limited cradle-to-gate life cycle analysis was carried out to assess the relative environmental performance of the prototype and benchmark buildings. This included only the embodied carbon associated with the materials used and the energy used in the construction. Two scenarios were considered for the benchmark building: 'standard materials' and 'sustainable materials'. The 'sustainable materials' option considers the use of cement replacement and air-drying of the wood. The carbon emission associated with construction were taken as the same for all cases. The embodied carbon footprint of the prototype building was found to be 60% than the benchmark building for the 'sustainable materials' option and 75% lower when considering the 'standard materials' options.

4 CLT IN IRELAND

Compared the UK, where over 600 CLT buildings have been constructed, this form of construction is relatively new to Ireland and until recently has been limited to single family dwellings. Two recently completed buildings in Dublin, the Ballyogen Environmental Management Centre and the Samuel Beckett Civic Campus have used CLT for walls, floors and roofs. In Figure 24, the Samuel Beckett building and a view of its interior are shown. There are plans for a number of low-rise public buildings. Given the success of this building system globally, it is expected that CLT construction will increase as with the construction industry grows over the coming years.

5 RESEARCH

In order to support the certification and wider use of this building system a considerable amount of research is underway across the globe including in Ireland. Areas of research which have been identified by COST Actions, Code Committees and feasibility studies, such as those described, include: technical properties, connection behaviour, vibration behaviour, fire, and sustainability. Two current COST actions, FP1402 and FP1404, bring together researchers on CLT in order to optimise the effectiveness of the individual efforts.

At NUI Galway, CLT research has been ongoing for over three years and two of the projects are outlined.

Figure 24. Samuel Beckett Civic Campus.

5.1 CLT from Irish timber

In a recently completed research project at NUI Galway, the viability of using Grade C16 Irish grown Sitka spruce to manufacture CLT panels was established. A suitable adhesive has been identified and optimum processing parameters have been established for CLT manufacture [33]. The in-plane and out-of-plane bending performance of Irish CLT panels has been established and rolling shear characteristics have been determined. The influence of layer thickness on the bending characteristics has been identified as an important factor in design [34]. CLT testing of a panel is shown in Figure 25 and rolling shear failure of the cross layer is seen in Figure 26. The flexural stiffness of the Irish panels compared well with commercial CLT panels manufactured from Central European Norway spruce. The development of a CLT manufacturing plant in Ireland presents an opportunity to add significant value to the output from Irish forests and to increase employment in rural areas.

Figure 25. Out-of-plane bending test on Irish CLT panel

Figure 26. Rolling shear failure of Irish CLT panel

5.2 Vibration characteristics of CLT floor systems

The serviceability limit state usually governs design of timber floor systems. The influence of connection systems and the influence of structural and non-structural concrete toppings on the dynamic performance of CLT floors is currently under investigation in NUI Galway [35] with a view to optimising the serviceability design (Figure 27). Testing of different floor systems in the laboratory and in-situ in buildings is being undertaken together with finite element modelling. This work is ongoing.

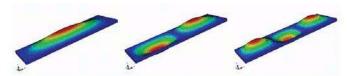


Figure 27. Mode-shapes of two-way spanning CLT panels.

6 CONCLUSIONS

The use of CLT in construction is growing and is being used in increasingly demanding applications. This trend is being driven by the challenge of sustainable construction and is being enabled by research and development across the globe that is driving the technology forward. In this paper, recent developments in CLT materials and construction trends have been reviewed and future opportunities and research needs identified. The potential to develop CLT from Irish timber has been demonstrated.

REFERENCES

- [1] Brandner, R., Flatscher, G., Ringhofer, A., Schickhofer, G., Thiel, A. (2016), 'Cross laminated timber (CLT): overview and development', European Journal of Wood and Wood Products, 74(3), 331-351.
- [2] EN1995-2:2004, Eurocode 5: Design of timber structures Part 2: Bridges, CEN European Committee for Standardisation, Brussels, Belgium 2004.
- [3] UNECE/FAO, Forest Products Annual Market Review 2014-2015, 2015.
- [4] Schickhofer, G., Brandner, R., Bauer, H. (2016), 'Introduction to CLT, product properties, strength classes', *Proceedings of Conference of COST Actions FP1402 and FP1404*, Stockholm, Sweden.
- [5] Crawford D., Hairstans R., Smith R.E. (2013), 'Feasibility of cross-laminated timber production from UK Sitka spruce', Proceedings of European Conference on Cross Laminated Timber, Graz, Austria. 37-52.
- [6] http://www.woodskyscrapers.com/. Accessed: 050716.
- [7] EN16351:2015, Timber structures cross laminated timber-Requirements, CEN European Committee for Standardisation, Brussels, Belgium.
- [8] Robertson, A.B., Lam, F.C., Cole, R.J. (2012), 'A comparitive cradle-to-gate life cycle assessment of mid-rise office building construction alternatives: laminated timber or reinforced concrete', *Buildings*, 2, 245-270.
- [9] Dolan, D, Harte, A.M. (2014), 'A Comparison of the Embodied Energy and Embodied Carbon of a Timber Visitor Centre in Ireland with its Concrete Equivalent', *Proceedings of World Conference on Timber Engineering, Quebec*, Canada.
- [10] Fell, D. (2010), Wood in the human environment: restorative properties of wood in the built indoor environment, PhD thesis, University of British Columbia.
- [11] Sakarugawa, S, Miyazaki, Y, Kaneko, T Makita, T, Influence of wood wall panels on physiological and psychological responses. J of Wood Science, 51:136-140, 2005.
- [12] Elias, MJ, Schools as a source of stress to children: an analysis of causal and ameliorative influences, J of School Psychology 27:393-407 1989.
- [13] https://www.behance.net/gallery/12747107/Stadthaus-Murray-Grove-LondonUK. Accessed 050716
- [14] EN1995-1-1:2004, Eurocode 5: Design of timber structures Part 1-1: General Common rules and rules for buildings, CEN European Committee for Standardisation, Brussels, Belgium, 2004.

- [15] Karacabeyli, E., Douglas, B., *CLT Handbook: cross-laminated timber, US Edition*, 2013.
- [16] Gagnon, S., Pirvi, C. (eds), *CLT Handbook: cross-laminated timber, Canadian Edition*, 2011.
- [17] Thiel, A., Brandner, R. (2015), 'ULS design of CLT elements -basics and some special topics', *Proceedings of Cross Laminated Timber a competitive wood product for visionary and fire safe buildings: Joint Conference of COST Actions FP1402 and FP1404*, KTH, Stockholm, Sweden.
- [18] Harris, R., Ringhofer, A., Schickhofer, G. (2013), Focus solid timber solutions European conference on cross laminated timber (CLT), University of Bath, Bath, UK.
- [19] Brandner, R., Dietsch, P., Droscher, J., Schulte-Wrede, M., Kreuzinger, H., Sieder, M., Schickhofer, G, Winder, S. (2015), 'Shear properties of cross laminered timber (CLT) under in-plane load: test configuration and experimental study', *Proceedings of 2nd INTER Meeting*, Sibenik, Croatia
- [20] Tomasi, R. (2013), 'Seismic behaviour of connections for buildings in CLT', Proceedings of European Conference on Cross Laminated Timber, Graz, Austria. p. 37-52.
- [21] Gerard R., Barber D., Wolski A., Fire safety challenges of tall wood buildings. Arup North America, San Francisco, CA, and Fire Protection Research Foundation, Quincy, MA, USA, 2013.
- [22] Frangi, A., Fontana, M., Fire performance of timber structures under natural fire conditions, *Fire Safety Science* 8:275-290, 2005.
- [23] Frangi, A., Fontana, M., Hugi, E., Jobstl, R. (2009), 'Experimental analysis of cross-laminated timber panels in fire', *Fire Safety Journal* 44, 1078-1087.
- [24] Frangi, A., Bochicchio, G., Ceccotti, A., Lauriola, M.P., (2008), 'Natural full-scale fire test on a 3 storey Xlam timber building', Proceedings of 10th World Conference on Timber Engineering, Miyazaki, Japan.
- [25] Brandon, D., Maluk, C., Ansell, M.P., Harris, R., Walker, P., Bisby, L., Bregulla, J. (2015), 'Fire performance of metal-free timber connections' *Proceedings of the ICE - Construction Materials*, 168(4), 173-186.
- [26] Serrano, E., Documentation of the Limnologen project, Report No 56, Vaxjo University, Sweden, 2009.
- [27] White, G, Mayfield School, //www.ramboll.com/projects/ruk/mayfield-school, Accessed:050716.
- [28] Hartmann, K. (2015), 'Mayfield School. CLT + BIM = Added value', *Presentation to IITU Industry Seminar, NUI Galway*, Ireland
- [29] Acton Ostry Architects Inc. (2016), A tale of tall wood. Brock Commons student residence, University of British Columbia, Vancouver, Canada.
- [30] Green, M. (2012). *The Case For Tall Wood Buildings*, mgb Architecture + Design, Vancouver, Canada, 2012.
- [31] Skidmore, Owings, and Merrill, LLP. 2013. Timber Tower Research Project. https://www.som.com/sites/default/files/20130506_ SOM-Timber-Tower-Final-Report 1.pdf. Accessed January 14, 2014.
- [32] Wells, M. (2011), 'Tall timber buildings: applications of timber construction in multistory buildings', CTBUH Journal, 2011(1), 24-27.
- [33] Sikora, K.S., McPolin, D.O., Harte, A.M. (2015), 'Shear strength and durability testing of adhesive bonds in cross-laminated timber, *J Adhesion*, 92(7-9), 758-777.
- [34] Sikora, K.S., McPolin, D.O., Harte, A.M. (2016), 'Effects of the thickness of cross-laminated timber (CLT) panels made from Irish Sitka Spruce on mechanical performance in bending and shear', Construction and Building Materials, 116, 141-150.
- [35] UiChulain, C., Sikora, K, Harte, A. (2016), 'Influence of connection systems on the serviceability response of CLT timber flooring', Proceedings of World Conference on Timber Engineering (WCTE16), Vienna, Austria.